

BharatiyaVidyaBhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058 B, TCLM (CC) J, Juny J END SEM Examinations May 2022

17/ 5/22

Program: Civil Engineering

Duration: 3hr

Duin

Course Code: PC-BTC601

Maximum Points: 100

Course Name: Construction Engineering and Management

Semester: VI

Instructions:

- 1. Attempt any five questions.
- 2. Neat diagrams must be drawn wherever necessary.
- 3. Assume Suitable data if necessary and state it clearly.

Q . No.				Questions		Points	со	BL	PI		
	a	Discuss the Highway cor	process	s of post tender on project.	planning for a	8	CO1 CO3	BL3	1.4.1		
1	b	Describe re	source	smoothing alo	ng with steps	6	CO1	BL3	1.3.1		
	с	involved in resource smoothing.0001110Discuss common good practices in construction projects.6CO2BL11.4									
2	a	Discuss the	e role manag	of Client and gement side in	contractor as a construction	6	CO1	BL2	1.4.1		
2	b		etwork o	of the project		10	CO2	BL5	2.3.1		
		Perform CP completion Interfering f	time. Ca	ulations and Fin alculate Total fl	nd the critical pa oat, Free float, I	th and endepende	xpected ent Floa	project t and	ct		
		completion Interfering f	time. Ca float.	alculate Total fl	oat, Free float, I	th and e ndepende	xpected ent Floa	project t and	ct		
		completion Interfering f	time. Ca	alculate Total fl	oat, Free float, I	th and e ndepende	xpected ent Floa	. projec it and	2t		
		completion Interfering f	time. Ca float. Activity	alculate Total fl	oat, Free float, I Durations in (Weeks)	th and e ndepende	xpected ent Floa	. projec it and	ct		
		completion Interfering f	time. Ca float. Activity A	alculate Total fl	oat, Free float, I Durations in (Weeks) 5	th and e ndepende	xpected ent Floa	. projec it and	zt		
		completion Interfering f	time. Ca float. Activity A B	alculate Total fl	oat, Free float, I Durations in (Weeks) 5 11	th and e	xpected ent Floa	projection projection in the second sec	zt		
		completion Interfering f	time. Ca float. Activity A B C	Immediate Predecessor(s)	oat, Free float, I Durations in (Weeks) 5 11 8	th and e	xpected ent Floa	. projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D	alculate Total fl	oat, Free float, I Durations in (Weeks) 5 11 8 7	th and e	xpected ent Floa	. projec it and	zt		
		completion Interfering f	time. Ca float. Activity A B C D E	Immediate Predecessor(s) - - C A	oat, Free float, I Durations in (Weeks) 5 11 8 7 9	th and e	xpected ent Floa	projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F	Immediate Predecessor(s) - - C A A,B,D	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4	th and e	xpected ent Floa	projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G	Immediate Predecessor(s) - - C A A,B,D C	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12	th and e	xpected ent Floa	. projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G H	Immediate Predecessor(s) - - C A A,B,D C C	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12 5	th and e	xpected ent Floa	. projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G H I	Immediate Predecessor(s) - - C A A,B,D C C C E,F,G	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12 5 10	th and e	xpected ent Floa	projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G H I J	Immediate Predecessor(s) - - C A A,B,D C C E,F,G F,G	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12 5 10 5	ith and e	xpected ent Floa	. projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G H I J K	Immediate Predecessor(s) - - - - C A A,B,D C C C E,F,G F,G H	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12 5 10 5 5 5 5	ith and e ndepend	xpected ent Floa	. projec	zt		
		completion Interfering f	time. Ca float. Activity A B C D E F G H I J	Immediate Predecessor(s) - - C A A,B,D C C E,F,G F,G	oat, Free float, I Durations in (Weeks) 5 11 8 7 9 4 12 5 10 5	ith and e	xpected ent Floa	. projec	zt		

	с	Discuss vertical pr	roduction	n metho	od of a	4		202	BL2	1.4.1
		scheduling.	at) Sura	oot the	tunes	. 				
		What is an accident personal protective eq	uinment	(PPE) to b	ne used to	6		CO2	BL2	1.4.3
	a	minimize accidents in	construc	tion proje	ect					
		minimize accidents in	life aval		and brie	-				
	b	Draw typical project	in a proi	ect	and blic.	5		CO1	BL2	1.3.
		about different stages	in a prop	the activ	rities of a					
	с	Time estimates in We PERT network are give				9	(CO2	BL4	2.3.
	<u> </u>					_				
		Activity		stimates (
		0)ptimistic	Most	Pessimis	1C				
				Likely		_				
		1-2	1	1	7					
		1-3	1	4	8					
		1-4	21	1	0					
		2-5	1	5	14					
3		3-5	$\frac{2}{2}$	5	8					
		4-6	3	6	15					
		5-6	3		10					
		 ii) Determine the of project length iii) What is the proearlier than exp iv) What is the proweeks later than v) If the project du 	h. bbability t bected tim bbability t n expecte	hat the p ne? hat the p ed time?	roject will project wil	be con l be con	npleto nplet	ed at l ed no	east 4 more	weel
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b	h. bbability t bbability t n expected ue date is bility tha pletion the be the so	hat the p he? hat the p d time? 19 week t the proj me is 20 v	roject will project wil s, what is ect will b weeks.	be con be con the pro	nplete nplet obab leted	ed at l ed no ility of on so	east 4 more f not n chedul	weel than neetin e if tl
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b	h. bbability t bbability t n expecte ue date is bility tha pletion the be the so be 90%?	hat the p he? hat the p d time? 19 week t the proj me is 20 week	roject will project wil s, what is ect will b weeks. completio	be com be con the pro- e comp on time	nplet nplet obab leted e for	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should the completion to b	h. bbability t bbability t n expected ue date is bility tha pletion the be the so be 90%?	hat the p he? hat the p d time? 19 week t the proj me is 20 week	roject will project wil s, what is ect will b weeks. completio	be com be con the pro e comp on time	nplet nplet obab leted e for	ed at l ed no ility of on so	east 4 more f not n chedul	weel than neetir e if th oility
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b	h. bbability t bbability t n expected ue date is bility tha pletion the be the so be 90%?	hat the p he? hat the p d time? 19 week t the proj me is 20 week	roject will project wil s, what is ect will b weeks. completio	be com be con the pro- e comp on time	nplet nplet obab leted e for	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
		of project length iii) What is the pro- earlier than exp iv) What is the pro- weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given below	h. bbability t pected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? canking of ow	hat the p he? hat the p d time? 19 week t the proj me is 20 week	roject will project wil s, what is ect will b weeks. completio	be com be con the pro- e comp on time s 8	nplet nplet obab leted e for	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t bected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? canking of ow tem A bo. co	hat the p he? hat the p ed time? s 19 week t the proj me is 20 v cheduled f the diffe	roject will project will s, what is ect will b weeks. completio	be com be con the pro- e comp on time s 8	nplet nplet obab leted e for	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t bected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? canking of ow tem A bo. co	hat the p he? hat the p ed time? s 19 week t the proj me is 20 v cheduled f the diffe	roject will project wil s, what is ect will b weeks. completio rent item	be com be con the pro- e comp on time s 8 Unit	nplet obab leted cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
		of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t pected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? ranking of ow tem Ai bo. co U	hat the p he? hat the p ed time? a 19 week t the proj me is 20 week t the diffe	roject will project will s, what is ect will b weeks. completio erent item	be complete the pro- be complete the pro- complete the pro- complete the pro- complete the pro- be complete the pro- complete the pro- compl	nplet obab leted cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th
4	2	of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t bected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? ranking of ow tem Ar bo. co U	hat the p he? hat the p ed time? a 19 week t the proj me is 20 week t the diffe	roject will project will s, what is ect will b weeks. completion prent item on in 00 00	be complete the pro- the pro- e complete comple	nplet obab leted e for cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
4	a	of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t pected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? ranking of ow tem A lo. U 1 2	hat the p he? hat the p ed time? 19 week t the proj me is 20 week t the diffe cheduled f the diffe nnual onsumptio nit 1400 1500	roject will project will s, what is ect will b weeks. completio erent item on in 00 00 0	be complete be conditioned be complete be	nplet obab leted e for cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
4	a	of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t pected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? ranking of ow tem A: to. co U 1 2 3	hat the p hat the p ed time? 19 week t the proj me is 20 week t the diffe cheduled f the diffe nnual onsumption nit 1400 1500	roject will project will s, what is ect will b weeks. completio erent item on in 00 00 00 00	be complete the pro- the pro- e complete comple	npleto npleto obab leted e for cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
4	a	of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t bected tim bbability t n expected ue date is bility tha pletion tim be the so be 90%? ranking of ow tem A lo. co 1 2 3 4	hat the p he? hat the p ed time? a 19 week t the proj me is 20 week t the diffe cheduled f the diffe nnual onsumption nit 1500 5250	roject will project will s, what is ect will b weeks. completio rent item on in 00 00 00 00 00 00 00	be complete the pro- be complete the pro- complete the pro- be complete the pro- complete the pro- be complete the pro- complete the pro- be complete the pro- complete the pro- co	nplet nplet obab leted e for cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility
4	a	of project length iii) What is the pro earlier than exp iv) What is the pro weeks later than v) If the project du the due date? vi) Find the probal scheduled comp vii)What should b completion to b Prepare A, B and C ra for the data given belo	h. bbability t pected tim bbability t n expected ue date is bility tha pletion tim be the sc be 90%? ranking of ow tem A: bo. cc U 1 2 3 4 5	hat the p he? hat the p ed time? a 19 week t the proj me is 20 week t the proj me is 20 week t the diffe cheduled f the diffe nnual onsumption nit 1400 1500 5250 250	roject will project will s, what is ect will b weeks. completio erent item on in 00 00 00 00 00 00 00 00 00 00 00 00 00	be complete the pro- the pro- e complete comple	nplet nplet obab leted e for cost	ed at l ed no ility of on so the p	east 4 more f not n chedul probab	weel than neetir e if th oility

	·b	Discuss the p significance of S	urpose V, CV, S	of EVM PI, CPI. T	and state SPI.	the		6	CO2	BL2	2.1.1
	с	Discuss the nee of highway cons equipment req project.	d of mec struction	hanizatio project. 1	n in the con Also list out	the		6	C01	BL2	2.1.2
	a	Explain in detai	ls Hybrid	Annuity	model (HAN	1).	(6	CO4	BL2	1.3.
5	b	Discuss health taken while us highway constru	ing cons action pro	truction oject.	equipments	for		8	CO1	BL3	2.1.1
	c	Define organiza staff organizat advantages.	tion and ion stru	draw a f acture a	typical line long with	and its		5	CO1	BL1	2.1.1
	a	Differentiate se money.	ecurity	deposit	and reten	tion	:	3	CO4	BL2	2.1.2
	b	A project consist Determine optim	s of 5 ac	tivities as	shown belo	w	1	2	CO3	BL4	2.3.1
6			<u>1-2</u> <u>1-3</u>	weeks (NT) 5 3	Time (CT) 4 1	Cos 6(mal st ₹ 00	Cras Cost 800 600	₹		
			<u>1-4</u> 2-4	84	5	90	00	1200 1200	5		
			3-4	4	3		00	700			
	c	Discuss arbitrat	on along	with its a	advantages.		5	5	CO4	BL2	1.3.1
	a	You are assigned of High Rise Bu will maintain on	ilding pro	bibility as bject, whi	a site mana ch records	iger you	8	3	CO2	BL3	3.1.2
6	b	Define lean con waste in constru	ction.			s of	6	5	C O2	BL1	1.3.1
		For the data give Also determine c	n draw A ritical pa	ON diagr th and to	am tal duration	for t	6 he p		C O2	BL6	2.3.1
		Activit	y Imm	ediate cessor(s)	Durations in		p	10,000			
7		A		-	<u>(Days)</u> 5						
1	С	В		A	4						
		С		A	7						
		D		A	8						
1		E	the second se	B,C	6						
		F		<u>D</u>	3						
		G		D	10	_					
		H	E.	F,G	4	i					

Standard Normal Probabilities

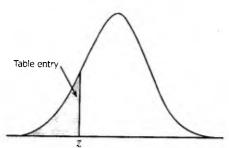


Table entry for z is the area under the standard normal curve to the left of z.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0 038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

4

Standard Normal Probabilities

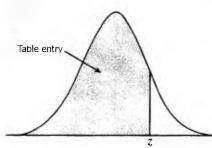


Table entry for z is the area under the standard normal curve to the left of z.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	,5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.997 9	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	,9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058 T. Y. M. Teuch (UI V)'/) Security Re-Examinations July 2022

817/22

Program: Civil Engineering

Course Code: PC-BTC601

Duration: 3hr Maximum Points: 100

Course Name: Construction Engineering and Management

Semester: VI

Instructions:

1. Attempt any five questions.

- 2. Neat diagrams must be drawn wherever necessary.
- 3. As sume Suitable data if necessary and state it clearly.

Q. No.		Questions	Points	со	BL	PI
1	a	Discuss the characteristics of a construction project.	8	CO1 CO3	BL3	1.4.1
	b	Draw work breakdown structure for construction of a high rise residential building.	6	CO1	BL3	1.3.1
	с	Differentiate Conventional construction methods against Mechanized construction methods in the context of any construction project.	6	CO2	BL1	1.4.1
2	a	Discuss in detail stakeholders involved in construction project for place like Mumbai city.	5	CO1	BL2	1.4.1
	b	Determine critical path, total, free, independent and free float	9	CO2	BL5	2.3.1
		2 7 6	TO			
			6	/	e	Ð
	с	Discuss resource smoothing and resource levelling.	6	C02	g EL2	1.4.1
3	c	Discuss resource smoothing and resource levelling. Define PPP and discuss characteristics of PPP contract.	6 6 6	C02 C02	g BL2 BL2) 1.4.1 1.4.1
3		biscuss resource smoothing and resource levelling. Define PPP and discuss characteristics of PPP				

PERT network are given below.

Activity	Time	estimates	(Days)
· ·	Optimistic	Most	Pessimistic
		Likely	
1-2	3	5	7
1-3	1	2	3
2-5	6	8	12
3-4	8	12	17
4-5	0	0	0
4-6	6	9	12
4-7	3	6	8
5-8	5	7	9
6-9	1	2	3
8-9	3	6	8
7-10	8	15	20
9-10	2	4	6

i) Draw the project network and identify critical path.

ii) Determine the expected project length, standard deviation and variance of project length.

iii) What is the probability that the project will be finished in 36 days.

A shop dealing in construction goods has seven	8	CO2	BL3	4.1.1	4
different items in its inventory.		<u> </u>	L		

The average number of units of each of these items along with their unit costs is given in Table. The owner uses ABC analysis to decide the criticality of items for procurement. Classify the items as per ABC analysis.

	a		me of item	Average annual consumption (No.)		ge cost 1nit (in			
4		a		10000	121.5				
		b		10000	100.0				
		С		24000	14.50				
		d		16000	19.75	5			
		e		60000	3.10				
		f		50000	2.45				
		g		30000	0.50				
	b	Discuss the purpose significance of SV, CV, S	SPI, CF	PI, TSPI.		6	CO2	BL2	2.1.1
	с	Define lean construction waste in construction.	on and	d discuss form	ns of	6	CO2	BL1	1.3.1
	a	Discuss in details c construction and means			ts in	8	CO4	BL2	1.3.1
5	b	Discuss the causes of t construction project			ins in	6	CO1	BL3	2.1.1
	с	Define organization and staff organization str advantages.					CO1	BL1	2.1.1
	a		M and	d PERT		4	CO2	BL2	2.1.2
6	b	Discuss time cost tradeo				8	CO3	BL4	2.3.1

			Derive expression for EOQ and it importance in	8	CO4	BL2	1.3.1
-		CI	Materials management in construction Draw job layout for construction of high rise		CO2		
		b	building. Discuss post tender planning for a construction	8	CO2	BL6	2.3.1
7	7		of high rise building. Explain clearly the following statement "CPM is deterministic and activity oriented network while PERT is a probabilistic and event oriented network.	6	CO2	BL6	2.3.1

Standard Normal Probabilities

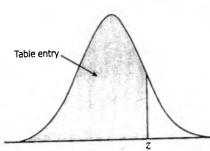
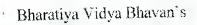



Table entry for z is the area under the standard normal curve to the left of z.

~	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
			.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.0	.5000	.5040	.5478	.5517	.5557	.5596	,5636	.5675	.5714	.5753
0.1	.5398	.5438	and the second se	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.2	.5793	.5832	.5871	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.3	.6179	.6217	.6255	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.4	.6554	.6591	.6628		.7054	.7088	.7123	.7157	.7190	.7224
0.5	.6915	.6950	.6985	.7019	.7389	.7422	.7454	.7486	.7517	.7549
0.6	.7257	.7291	.7324	.7357	.7704	.7734	.7764	.7794	.7823	.7852
0.7	.7580	.7611	.7642	.7673	.7995	.8023	.8051	.8078	.8106	.8133
0.8	.7881	.7910	.7939	.7967	.8264	.8289	.8315	.8340	.8365	.8389
0.9	.8159	.8186	.8212	.8238		.8531	.8554	.8577	.8599	.8621
1.0	.8413	.8438	.8461	.8485	.8508 .8729	.8749	.8770	.8790	.8810	.8830
1.1	.8643	.8665	.8686	.8708		.8944	.8962	.8980	.8997	.9015
1.2	.8849	.8869	.8888	.8907	.8925	.9115	.9131	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	.9162	.9177
1.3	.9032	,9049	.9066	.9082	.9099	.9115	.9279	.9292	,9306	.9319
1.4	.9192	.9207	.9222	.9236	.9251	.9394	.9406	.9418	.9429	,9441
1.5	9332	.9345	.9357	.9370	.9382	.9505	.9515	.9525	.9535	.9545
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9608	.9616	.9625	.9633
117	.9554	.9564	.9573	.9582	.9591	.9599	.9686	.9693	.9699	.9706
1.8	.9641	.9649	.9656	.9664	.9671		.9750	.9756	.9761	.9767
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9730	.9808	.9812	.9817
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9805	.9850	.9854	.9857
2.1	.9821	.9826	.9830	,9834	.9838	.9842	.9881	.9884	.9887	.9890
2.2	.9861	.9864	.9868	.9871	.9875	.9878	and the second s	.9911	.9913	.9916
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9932	.9934	.9936
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9951	.9952
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9963	.9964
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961		.9973	.9974
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972 .9979	.9980	.9981
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979		.9986	.9986
2.9	.9981	,9982	.9982	.9983	.9984	.9984	.9985	.9985	.9980	.9990
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989		.9993
3.1	.9990	.9991	,9991	.9991	.9992	.9992	,9992	.9992	.9993	.9995
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	,9996	.9996	.9996	,9996	.9996	.9996	.99997
3,4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	,9990

SAR

SARDAR PATEL COLLEGE OF ENGINEERING (Government Aided Autonomous Institute)

19/5/22

Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Exam - May 2022 Examinations

Len VI T.Y. B. Tech (civi)

Program: B.Tech -Civil Engineering

Course Code: PC-BTC602

Duration: 3 Hour Maximum Points: 100 Semester: VI

Course Name: Design Of Steel Structures

Notes:

- 1. Assume any missing data and state the same clearly
- 2. Use of IS 800-2007 and steel table is allowed
- 3. Draw neat sketches to illustrate your answers
- 4. For all steel plates and angles, fy = 250MPa, fu= 410MPa

Q.No.	Questions	Points	со	BL	PI
1.	 The member of a roof truss carries the following unfactored loads: DL = 60kN (Tensile) LL = 40kN (Tensile) WL = 90kN (Compressive) a. What will be the design loads as per IS 800:2007 load combinations? b. Design the element as a tension member and also design its connection with 10mm thick gusset plate using 4.6grade bolts c. Check the member designed above for the safety in compression according to the load combinations generated. 	20	1,2	3,4	3.1.4 3.1.6
2.a)	A single angle strut (loaded through single leg) has the following unfactored forces acting $DL = 50kN$, $LL = 35kN$, both forces being compressive in nature. The length of member between centres of intersection is 2.5m.Design the section as per IS 800:2007. Assume the connection to be hinged with two bolts at each end	10	1,2	3	3.1.4 3.1.6
2.b)	A column carries a design axial load of 1000kN. Design the column section using rolled steel section when One end is restrained against rotation and translation while other is restrained against translation only. Length of member is 4.2m	06	1,2	3	3.1.4 3.1.6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Exam – May 2022 Examinations

2.c)	Explain the various failure modes of compression members	04	1	1,2	$1.4.1 \\ 2.1.3$
3.	Design a built up laced column to carry 1400kN design axial load using two channels facing back to back. Also design lacing and its connection using 4.6grade bolts. The column is hinged at both ends and the length is 4.5m. Draw neat sketch showing all the details	20	1,2	3	3.1.4 3.1.6
	A floor of hall has beam layout as shown in figure below:				
4.a)	6m D 2m 2m 2m	14	1,2	3,4	3.1.4
	 Design beam AB(simply supported). Loads are as follows : RCC slab depth = 125mm Floor finish load = 1.5kN/m² Live load = 2.5kN/m² Wall thickness = 230mm (All beams support walls of height 2.5m) Design the beam and provide all necessary checks assuming the beam to be laterally supported 				
4.b)	Explain the procedure for wind load calculations on roof truss	06	2	1,2	1.4. 2.1.
5.a)	Design a framed connection for an ISMB 300(secondary beam) to transfer 120kN factored reaction to ISMB 450(main beam) using 4.6grade bolts. Draw neat sketch to show connection details	10	1,2	3	3.1 3.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Exam - May 2022 Examinations

5.b)	Explain the necessity of column bases. What is the use of steel base plate in column base?	04	1	1,2	1.4.1 2.1.3
5.c)	Explain the advantages and disadvantages of welding	06	1	1,2	1.4.1 2.1.3
б.а)	Determine the design tensile strength of the plate as shown in the figure. The plate is connected by 20mm dia bolts and thickness of plate is 10mm. $\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	08	1	3	3.1.4 3.1.6
6.b)	Design a welded connection for a single angle tension member ISA 100x100x10. The angle is subjected to an axial force of 120kN.	08	1	3	3.1.4 3.1.6
б.с)	Explain various modes of failure in bolted joints	04	1	1,2	1.4.1 2.1.3
7.a)	Explain the classification of sections : plastic, compact, semi-compact and slender based on moment – rotation characteristics	06	1	1,2	1.4.1 2.1.3
7.b)	A simply supported beam ISMB 350@ 52.4kg/m has been used over a span of 7m to carry a design load of 25kN/m. check the safety of the beam in <i>shear</i> , <i>flexure and</i> <i>deflection</i> when the beam is <i>laterally unsupported</i>	10	1,2	3	3.1.4 3.1.6
7.c)	Explain rigid, semi-rigid and pinned types of connections.	04	1	1,2	1.4.1 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

117/22.

Re- Exam - July 2022 Examinations

T. Y. M. Terre (Civi) Serry VI Duration: 3 Hour

Program: B.Tech -Civil Engineering

Course Code: PC-BTC602

Course Name: Design Of Steel Structures

Maximum Points: 100 Semester: VI

Notes:

- 1. Assume any missing data and state the same clearly
- 2. Use of IS 800-2007 and steel table is allowed
- 3. Draw neat sketches to illustrate your answers
- 4. For all steel plates and angles, fy = 250MPa, fu = 410MPa

Q.No.	Questions	Points	со	BL	PI
	The member of a roof truss carries the following unfactored loads				
1.a)	DL = 80kN (Tensile) LL = 50kN (Tensile) WL = 100kN (Compressive)	03	1,2	3,4	$3.1 \\ 3.1$
	Calculate the loads as per all possible load combinations according to IS800-2007 and specify the design loads to be used				
1.b)	Design a tension member to carry an axial factored load of 300kN. Use a single angle rolled steel section connected (at site) to each side of a gusset plate of 10mm thick using 20mm diameter bolts of grade 4.6.		1,2	3,4	3.1 3.1
1.c)	Calculate the number of bolts required to connect two plates of 1120mm x 8mm size in lap joint, to transmit a factored load of 120 KN. Use 12 mm bolts of grade Fe 410		1,2	3,4	3.1
2.a)	A single angle strut (loaded through single leg) has the following unfactored forces acting $DL = 70$ kN, $LL = 25$ kN, both forces being compressive in nature. The length of member between centres of intersection is 2.9m.Design the section as per IS 800:2007. Assume the connection to be hinged with two bolts at each end	10	1,2	3	3.
2.b)	A column carries a design axial load of 1250kN. Design the column section using rolled steel section when both ends are restrained against rotation and translation. Length of member is 5m	-	1,2	3	3 . 3.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Munbai – 400058

Re- Exam - July 2022 Examinations

<u> </u>					
2.c)	Calculate live load on truss if the angle of slope of roof is 30°.	03	1	1,2	1.4 2.1
3.	Design a built up laced column to carry 1500kN design axial load using two channels facing back to back. Also design lacing and its connection using 4.6grade bolts. The column is fixed at both ends and the length is 5.5m. Draw neat sketch showing all the details	20	1,2	3	3.1. 3.1.
4.a)	Design a simply supported beam of span 5m carrying an RC floor capable of providing lateral restraint to the top compression flange. The design UDL is made up of 20-kN/m imposed load and 15 kN/m dead load. Provide all checks.	14	1,2	3,4	3.1. 3.1.
4.b)	State the merits and demerits of using steel as a structural material	06	2	1,2	1.4. 2.1.
5.a)	Design a framed connection for an ISMB 300(secondary beam) to transfer 135kN factored reaction to ISMB 450(main beam) using 4.6grade bolts. Draw neat sketch to show connection details	10	1,2	3	3.1. 3.1.
5.b)	Briefly describe the types of column bases used in steel structures	05	1	1,2	1.4. 2.1.
5.c)	Explain the advantages and disadvantages of bolting	05	1	1,2	1.4. 2.1.
6.a)	A roof truss shed is to be built in Chennai for an industry The size of shed is 20mx8m.The height of building is 10m at the eaves. Determine the basic wind pressure.	04	1	3	3.1. 3.1.
6.b)	Design a welded connection for a single angle tension member ISA 100x100x10. The angle is subjected to an axial force of 135kN.	10	1	3	3.1. 3.1.
б.с)	Explain the classification of sections : plastic, compact, semi- compact and slender based on moment – rotation characteristics	06	1	1,2	1.4. 2.1.
7.a)	Determine the design tensile strength of the plate 200×10 mm with the holes as shown below. M20 bolts and 10mm thick plates are used.	10	1	1,2	1.4. 2.1.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re- Exam - July 2022 Examinations

	40 30				
	(All dimensions are in mon)				
7.b)	A simply supported beam ISMB 350@ 52.4kg/m has been used over a span of 5m to carry a design load of 18.5kN/m. check the safety of the beam in <i>shear</i> . <i>flexure and deflection</i> when the beam is <i>laterally unsupported</i>	10	1,2	3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination

May 2022 T.Y. BITELL (Civi) Sens VI **Course Code: PC-BTC603** Course Name: Foundation Engg.

21

Duration: 3 Hours Maximum Points: 100 Semester: VI

Notes:

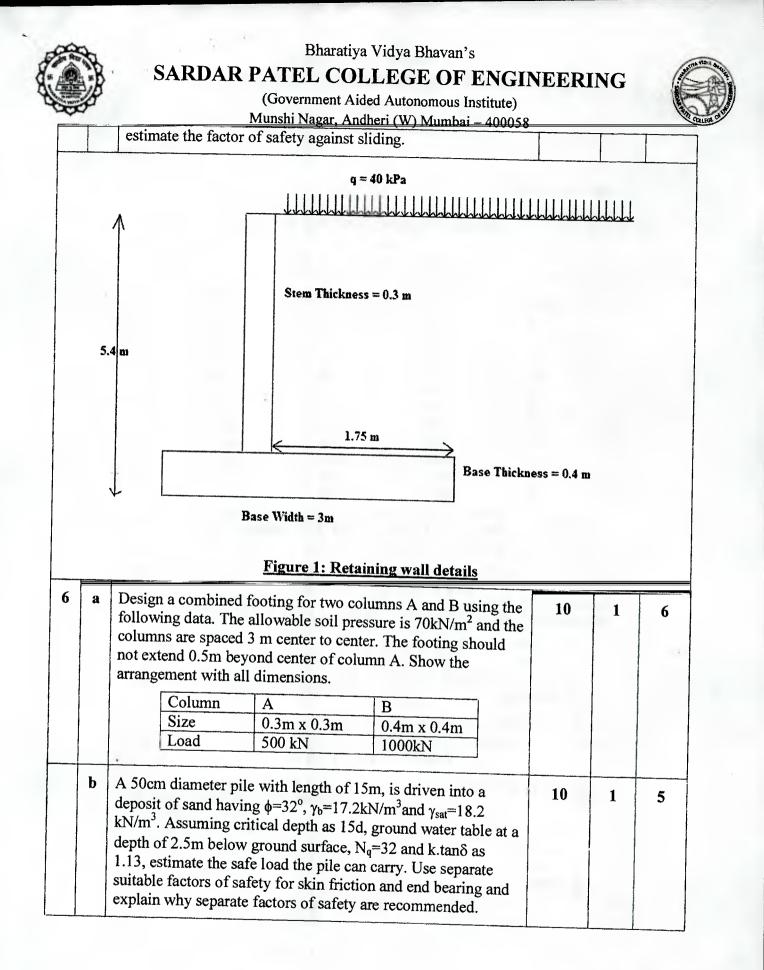
Program:

UG Civil

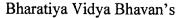
- Question 1 is compulsory. Attempt any 4 out of remaining questions •
- Assume suitable data if necessary and state it clearly •
- Clearly write units everywhere. Points will be deducted in each place units are missing
- Figure on right indicate maximum points for the given question, course outcomes attained, and Bloom's Taxonomy Level

Q.	No.		Points	CO	BL	
1	a	Differentiate between Rankine and Coulomb's theory of earth pressure.	5	2	4	
	b	Discuss the limitations of the plate load test	5	1	2	
	c	A bored pile of 40 cm diameter is installed in clayey soil with undrained cohesion of 75 kN/m ² . Design the length of the pile required to carry a safe load of 350kN, using a factor of safety of 3.0 and $\alpha = 0.58$.	5	1	6	
	d	Explain a ditch conduit and a positive projecting conduit with neat sketches.	5	1	3	
2	a	A contractor at a site is refusing to put adequate drainage behind a retaining wall. Convince him why an appropriate drainage system is necessary	5	2	5	
	b	Justify the use of a combined piled raft foundation for a high rise project.	5	1	5	
	c	Design a cantilever sheet pile wall retaining cohesionless soil of height 6 m, with drained friction angle of 32° , unit weight of 19.6 kN/m ³ , and GWT is deep below (> 100m). The wall may be assumed to be smooth and simplified method may be adopted. Draw a neat sketch of the same.	10	2	6	

Page 1 of 4


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



- 1		Munshi Nagar, Andheri (W) Mumbai – 400058			
3	a	Explain how reinforced earth can be applied to make construction sustainable and economic.	5	2	2
	b	Explain the conditions when negative skin friction can occur in piles and if it is desirable. If not, explain how the condition can be overcome.	5	1	2
	C	A foundation of size 2 m x 1.5 m is constructed at a depth of 1.0 m below ground surface of uniform sandy gravel having a friction angle of 35°, bulk density of 19.8 kN/m ³ above water table and a submerged density of 11.0 kN/m ³ . Determine the net ultimate bearing capacity of the foundation as per IS code recommendations if: a. GWT is 3.0 m below ground surface. b. GWT rises to 1.5 m below ground surface.	10	1	4
4	a	Can dynamic formulae be used for estimating pile capacity of bored piles? Discuss other conditions where these formulae are not suitable.	5	1	2
	b	Differentiate between general, local and punching shear failure	5	1	4
	c	A retaining wall is 8 m high with sand back fill in top 5.5 m $(\gamma_d = 18.5 \text{ kN/m}^3, \phi = 34^\circ)$ and saturated sandy clay below it $(\gamma_{sat} = 20.3 \text{ kN/m}^3, \phi = 28^\circ, c = 17 \text{ kPa})$. The ground water table is at the interface of the two layers. Sketch the lateral earth pressure distribution if the wall is expected to move away from the backfill.	10	2	3,4
5	a	Explain the following terms: Ultimate bearing capacity, safe bearing capacity and allowable bearing capacity	5	1	2
	b	Explain the construction of an imperfect ditch conduits with neat sketches	5	1	2,3
	c	Determine the maximum and minimum pressure under the base of a cantilever retaining wall shown in Fig. 1. The soil parameters are $c=0$, $\phi=40^{\circ}$ and $\gamma=17$ kN/m ³ and the angle of friction at the base may be taken as 30° . Assuming $\gamma_{concrete}=23.5$ kN/m ³ and no friction between soil and stem of wall, also	10	2	4

Page 2 of 4

Page 3 of 4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

IS 6403 : 1981

TABLE 1 BEARING CAPACITY FACTORS (Closer 5.1.1)							
	BRARING CAPACERY FACTORS						
¢ (Degrees)	<i>H</i> 4	×	MY				
0	5-14	1.00	0-00				
5	6-19	1.57	0-45				
10	8-35	2:47	1-22				
15	10.98	3 96	2-65				
20	14:63	6.40	5-39				
25	20 72	10-66	10 85				
30	30-14	18 40	22-40				
35	46 12	33-30	48 03				
40	75-31	64 20	109 41				
45	138-68	131-88	271-76				
50	266-89	\$19-07	762-89				

Norm — For obtaining values of N's, N's and N'y, calculate $\phi' = \tan^{-4}$ (0.67 $\tan \phi$). Read No, No, and Ny, from the Table corresponding to the value of ϕ' instead of ϕ which are values of N's, N's respectively.

5.1.2 The ultimate net bearing capacity obtained in 5.1.1 for strip footing shall be modified to take into account, the shape of the footing, inclination of loading, depth of embedment and effect of water table. The modified bearing capacity formula are given as under:

- a) In case of general shear } = eNe sodele + g(Ne 1) sudate failure qs
- b) in case of local aboar } = $\frac{1}{4} cN'e$ soleie + q(N'e 1) sedele failure q'e + $\frac{1}{4} B\gamma N'\gamma s\gamma d\gamma s\gamma W'$

		1.40%0 4	SHAPE FACTO		
SL.	SUATE OF BARE		\$	RAPE FACTOR	
			-	14	4
Ð	Continuous strip		1:00	1-00	1.00
H)	Rectangle		1+028/2	1+02 #16	1-04 8/2
山)	Square		1-\$	112	0-8
1-1	Curde		1.3	12	0-6

5.1.2.1 The shape factors shall be as given in Table 2.

Figure 2: IS 6403 – 1981 relevant clauses

Page 4 of 4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Re-Examination

12 July 2022 J.Y. A. Tech (GVI) Duration: 3 Hours

Maximum Points: 100

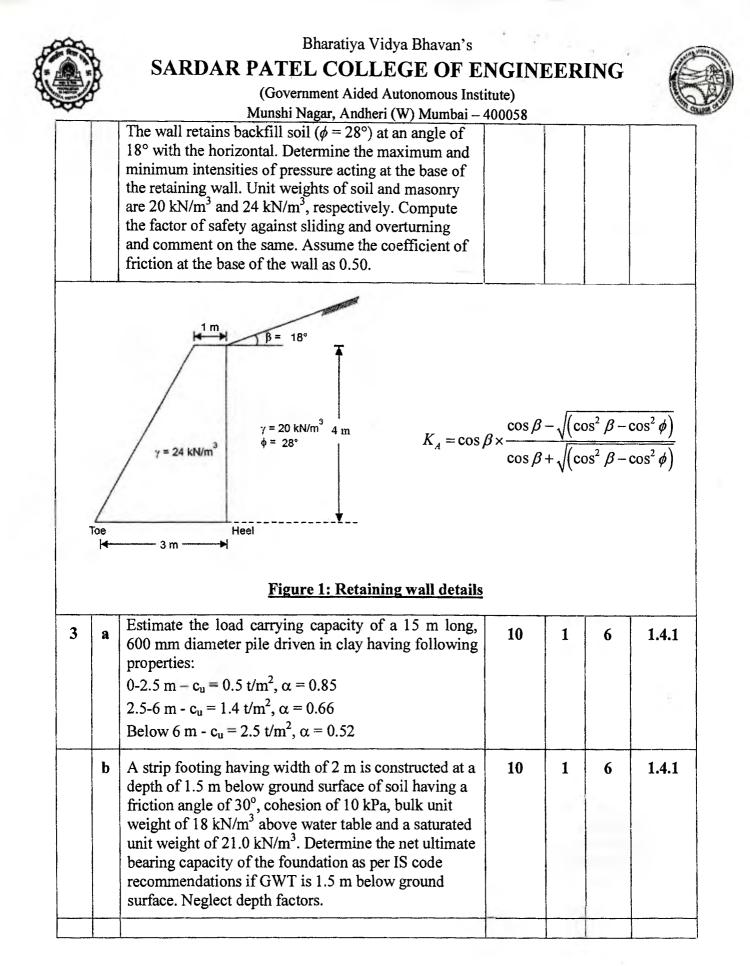
Semester: VI

VI

1217/22

Course Code: PC-BTC603 Course Name: Foundation Engineering

UG Civil


Notes:

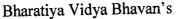
Program:

- Question 1 is compulsory. Attempt any 4 out of remaining questions •
- Answer each new question on a new page. But group all sub-questions together. .
- Assume suitable data if necessary and state it clearly
- Clearly write units everywhere. Points will be deducted in each place units are missing
- Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Taxonomy Level, and performance indicators

Q. N	0.		Points	CO	BL	PI
1	a	Calculate the earth pressure coefficients for active, at rest and passive conditions for a cohesionless soil with $\phi = 34^{\circ}$.	5	2	3	1.4.1
	b	What are the factors that determine the minimum depth of shallow foundations? Discuss briefly.	5	1	2	1.4.1
	c	Discuss classification of pile foundations based on material and on method of installation	5	1	5	1.4.1
	d	A rigid water pipe of diameter 2.5 m is to be laid in a ditch which is 3.5 m wide at the top of the pipe. It is to be covered with 3 m of clayey backfill having unit weight of 19 kN/m ³ . Calculate the load on the pipe if $C_d = 3.5$. What will be the load if this pipe is flexible?	5	1	3	1.4.1
2	a	Explain the conditions when local shear failure is possible under shallow foundation.	5	1	2	1.4.1
	b	State the advantages of a reinforced earth wall as compared to a gravity retaining wall	5	2	2,5	2.2.4
	c	A 4m high trapezoidal masonry retaining wall is 1 m wide at top and 3 m wide at its bottom. See Figure 1.	10	2	5	2.4

Page 1 of 4

Page 2 of 4


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

		Munshi Nagar, Andheri (W) Mumbai – 4	400058			
4	a	A smooth backed vertical wall is 6.3 m high and retains a soil with a bulk unit weight of 18 kN/m ³ and $\phi = 18^{\circ}$. The top of the soil is level with the top of the wall and is horizontal. If the soil surface carries a uniformly distributed load of 45 kN/m ² , determine the total active thrust on the wall and its point of application.	10	2	5	1.4.1
	b	A 2 x 2 group of piles with diameter 30 cm and length of 9 m is driven in cohesionless soil. The soil dry unit weight is 18 kN/m ³ and saturated unit weight is 19.62 kN/m ³ . GWT is at 3 m below ground surface. Assuming critical depth as 6 m, ktan δ = 1.35, N _q =100, spacing as 3d, compute the group capacity of the piles.	10	1	6	1.4.1
5	a	Differentiate between shallow foundations and deep foundations	5	1	5	2.2.4
	b	Explain classification of conduits	5	1	2	1.4.1
	c	Two load tests were conducted at a site: one with a square test plate of side 0.5 m each and the other with a square test plate of side 1.0 m each. For a settlement of 25 mm, the loads were found to be 60 kN and 180 kN, respectively in the two tests. Determine the allowable bearing pressure of the sand and the load which a square footing, $2 \text{ m} \times 2 \text{ m}$, can carry with the settlement not exceeding 25 mm using Housel's method.	5	1	5	1.4.1
	d	What is an initial pile load test and how is it different from a routine pile load test?	5	1	5	2.2.4
6	a	Discuss the method of carrying out a plate load test as per IS1888: 1982. How are results interpreted?	10	1	1,2	1.4.1
	b	Geotechnical investigations at a site have revealed the soil strata as shown in the table below. If a pile group of 3x4 in constructed at this site, with pile length of 12 m, diameter of 400 mm and spacing of 3d, estimate the consolidation settlement of the clay strata if the expected load is 300t.	10	1	5	= 1.4.1

Page 3 of 4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Depth	Strata	Remarks
$\frac{1}{0.0 \text{ m to } 3.0 \text{ m}}$	Sand	$\gamma = 17.5 \text{ kN/m}^3$
3.0 m to 15.0 m	Saturated Sand	GWT 3 m below GL; $\gamma_{sat} = 22 \text{ kN/m}^3$
15.0 m to 25.0 m	Clay	$C_c = 0.44, e_o = 1.2, \gamma_{sat} = 19.2 \text{ kN/m}^3$
25.0 m	Intact Rock	

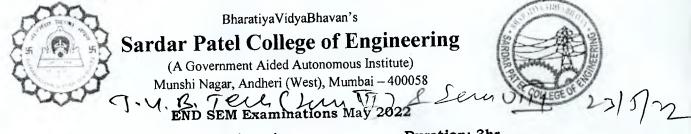
IS 6403 : 1981

TAI		CAPACITY FA	TORS
	Balance Ca	PAOLET FAOTORS	
(Degrees)	×	Ne	٨
	514	1.00	0.00
5	6-49	1-57	0-45
10	8-35	2:47	1-23
15	10.96	\$ 94	2.65
20	14:63	6.40	5-35
25	29 72	10.66	10 88
50	30-14	18-40	22-44
35	46 12	33-30	48 03
	75-31	64-20	109 41
40	136-88	154-60	271-7
45 50	266-89	519-07	762-8

Norm — For obtaining values of N_{∞} , N'_{∞} and N'_{γ} , calculate ϕ' is tan⁻⁴ (0.67 in ϕ). Read N_{∞} , N_{∞} and N_{γ} , from the Table corresponding to the value of ϕ' instand of ϕ which are values of N'_{∞} , N'_{∞} , N'_{γ} respectively.

5.1.2 The ultimate net bearing capacity obtained in 5.1.1 for strip footing shall be modified to take into account, the shape of the footing, inclination of loading, depth of embedment and effect of water table. The modified bearing capacity formulæ are given as under:

- a) In case of general shear $= \frac{eNe}{4} \frac{eNe}{2} \frac{eN$
- b) In case of local shear $\begin{cases} w \neq c W = selele + q(N = -1) sedele \\ + \frac{1}{2} BYN' ysydyi W \end{cases}$


5.1.2.1 The shape factors shall be as given in Table 2.

		*****	SHAPE FACTO		
54	SHAPE OF BARE		8	LAPE PAOTON	
No.			34	44	7
	Continuous strip		1.00	1-01	1.00
	Rectangle		1+028/2	1402 8/6	1-04 8/2
40)	Square		113 113	14 14	0-6
iv)	Circle		r in the bearing ca		

Figure 2: IS 6403 – 1981 relevant clauses

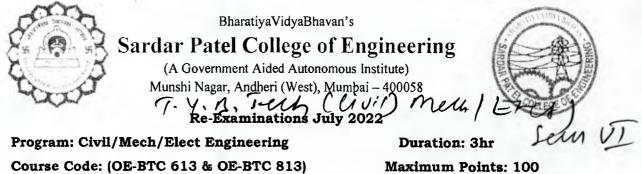
Page 4 of 4

Program: Civil/Mech/Elect Engineering

Course Code: (OE-BTC 613 & OE-BTC 813)

Maximum Points: 100

Course Name: Watershed Development & Management Semester: VI/VIII


Instructions:

1. Attempt any five questions.

- 2. Neat diagrams must be drawn wherever necessary.
- 3. Assume Suitable data if necessary and state it clearly.

Q. No.		Questions	Points	со	BL	PI
	a	What are the causes of watershed deterioration? Explain in detail.	6	CO2	BL2	1.4.1
1	b	A watershed has following data as given below Area of watershed= 9km ² ,Distance between t point=10km,Total length of channel of vari difference between outlet and further most po density, form factor, channel slope and average over	ous ord pint = б	er=450) 70m,Fi	nd dr	evation
	с	Explain in detail factors affecting runoff in a watershed.	8	CO1	BL1	1.4.1
1	a	Discuss components of watershed management programme along with its significance.	6	CO2	BL2	2.1.1
2	b	Explain the factors affecting infiltration in a watershed.	6	CO1	BL2	2.1.1
	с	Explain in detail urban recharge structure for RTRWH.	8	CO2	BL3	1.4.1
3	a	State the characteristics of watershed along with their importance regarding watershed management.	6	CO1	BL2	2.2.4
	b	Explain in detail types of soil erosion in a watershed	10	CO1	BL3	2.1.1
	c	Brief about RWH dam constructed at Una in Himachal Pradhesh.	T	CO1	BL3	2.1.1
	a	Calculate the availability of water in Roof Top RWH system for a group of 4 family members.	U	CO2	BL3	1.4.1
4		Size of roof is 12 m X10 m, with average annual ra coefficient is 0.8. Also calculate availability of wa with its %. Daily consumption of water is 120lits/	ter for n capita/da	umber	m and of days	l runot s along
	b	Discuss in detail the process of wind erosion in a watershed.	8	CO1	BL2	1.4.1
	c	Classify bench terraces as per slope and also draw neat labelled diagram.	6	CO1	BL1	2.1.2

6	a	Discuss the watershed development component of PMKSY along with the objectives of PMKSY.	6	CO1	BL1	2.1.2
5	b	Discuss in depth the factors affecting soil erosion in a watershed.	6	CO1	BL2	2.3.2
	c	Discuss about issues faced by people of Hiware Bazar prior to watershed development.	8	CO1	BL1	1.3.1
	a	Draw neat labeled diagram of first flush lock and sand bed filter.	6	CO2	BL2	2.1.2
6	b	What are the salient features of integrated	8	CO2	BL4	1.3.1
	c	Discuss the criteria for site selection of check dam and also discuss design criteria of a check	6	C02	BL4	1.3.1
	a	dam. What are the roles and responsibilities of Watershed development team (WDT)?	6	CO2	BL2	3.1.2
	b	Discuss in detail the process of wind erosion in a watershed.	6	CO1	BL1	2.3.2
7	c	You have been assigned as a responsibility for the development of a particular watershed, discuss about the data required for the watershed development project.	8	CO2	BL4	3.1.2

Course Code: (OE-BTC 613 & OE-BTC 813)

Semester: VI/VIII

Course Name: Watershed Development & Management

Instructions:

121mm.

- 1. Attempt any five questions.
- 2. Neat diagrams must be drawn wherever necessary.
- 3. Assume Suitable data if necessary and state it clearly.

Q. No.		Questions	Points	со	BL	PI
	a	Discuss the effect of land use change on hydrological cycle.	5	CO1	BL2	1.3.1
1	b	Discuss land capability classification.	8	CO1	BL1	1.3.1
	c	Explain in detail factors affecting runoff in a watershed.	7	CO1	BL1	1.4.1
	a	Discuss components of watershed management programme along with its significance.	6	CO2	BL2	2.1.1
2	b	Discuss the classification of watershed on the basis of land use.	6	CO1	BL1	1.3.1
	c	Explain in detail Roof Top Rainwater harvesting structure.	8	CO2	BL3	1.4.1
3	a	Explain in detail Characteristics of Watershed.	8	CO1	BL1	1.2.1
3	b	Explain in detail types of soil erosion in a watershed.	8	CO1	BL3	2.1.1
	с	Draw neat labeled sketch of watershed.	4	CO1	BL3	2.1.1
		Calculate the availability of water in Roof Top RWH system for a group of 5 family members.	6	CO2	BL3	1.4.1
4	a	Size of roof is 15 m X10 m, with average annual ra coefficient is 0.85. Also calculate availability of wa with its %. Daily consumption of water is 120lits/c	ter for n	umber (m and of days	runoff s along
	b	Discuss in detail filters required in rainwater harvesting structure.	8	CO1	BL2	1.4.1
	с	Discuss the importance of soil erosion studies in a watershed.	6	CO1	BL1	2.1.2
	a	Discuss in detail the process of wind erosion in a watershed.	6	CO1	BL1	2.3.2
5	b	Discuss design criteria for bund construction.	6	CO1	BL2	2.3.2
	c	Discuss engineering measures for soil conservation.	8	CO2	BL2	1.3.1

			÷.,		1	
	a	Discuss about district watershed development committee.	6	CO2	BL2	2.1.2
6	b	Classify bench terraces as per slope and also draw neat labelled diagram.	6	CO1	BL1	2.1.2
	с	Discuss how watershed management programme helped the people of Hiware Bazar village.	8	CO1	BL1	1.3.1
	а	Classify and discuss check dams.	8	CO2	BL2	3.1.2
7	b	Brief about the initiatives taken by Government of India.	4	CO2	BL4	3.1.2
	с	Discuss in detail classification of bund.	8	CO2	BL4	3.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

mester May 2022 Examinations T.Y. B. T. M. (G.J. 1 M.M.) Low VI Engineering Duration: 3 hrs. End Semester May 2022 Examinations

Program: B. Tech. Civil /Mech. Engineering

Course Code: OE-BTC612

Course Name: Sustainable Development

Notes:

- 1. There are TOTAL SEVEN MAIN questions, each of 20 points.
- 2. QUESTION 1 is COMPULSORY.
- 3. From the remaining SIX Questions Solve ANY FOUR.
- 4. Assume suitable data, wherever necessary and State it clearly.
- 5. Write answer to each question on a new page.
- 6. Answers to be accompanied with appropriate sketches/facts figures/table & or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions	Points	СО	BL	PI
1.	Answer the following:		+		+
	 In which report was the term sustainable development defined for the first time and accepted worldwide? (1) is not a part of SDG target to be achieved by 2030. (1) (primary and secondary education to all, higher education to all) W.r.t the UN SDG, is SDG 10. (1) (reduced inequalities, zero hunger, climate action, economic growth) At the central govt., plays the role of overseeing the implementation of SDGs of India. (1) SDG will target to water availability of all and its permanent management upto 2030 in India.(1) SDG 13 is about (1) Define 'Carbon trading'. (2) State the objective of Clean Development Mechanism. (2) Differentiate Paris agreement & Kyoto protocol (only two points). (2) State the years of the following Acts of India: Water Act, Air Act, Environment protection Act. (3) Explain in short 'SDG Index Score'. (2) Name any three international green building rating systems. (3) 	20	1,2,3,4	1	7.1.1
2.A	Explain 'Global Warming'. (2) State the causes and effects of global warming. (4) Explain in detail, based on the available literature by IPCC, the influence of greenhouse gases (GHGs) on global warming.(4)	10	2	2,3	7.1.2
2.B	State the factors affecting the Indian Economy. (5) State the guiding principles that can be used for planning or designing the sustainable development strategies (SDS).(5)	10	4	2	7.1.4

Maximum Points: 100 Semester: VI

Duration: 3hrs.

Page 1 of 2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester May 2022 Examinations

3.A	Explain the normative and descriptive form of sustainability (SD & SDG). (3) Describe the 'Craft of SDG'.(3) Give the strategic areas of SDG Action plan. (4)	10	1	2	
3.B	Write a note on 'Principles of Equity and Common but Differentiated Responsibilities and Respective Capabilities'.	10	1	2	7.1.1
4. A	Explain the 'Global energy consumption' w.r.t some facts and figures. (5) State the Need of renewable energy in present world along with the Challenges to explore and utilize it. (5)	10	2	2,3	7.1.3
4.B	Describe the 'GRIHA' green building rating system. (5) Give the assessment / criteria of GRIHA for existing buildings. (5)	10	2	2,3	7.1.3
5.A	Write a note on 'Meta principle of Sustainability'. (4) State the basic requirements of a sustainability assessment. (6)	10	4	2	7.1.2
5.B	State the sustainability assessment tools. (2) Explain any two tools with appropriate example in detail. (8)	10	4	2,3	7.1.2
6.A	Write a note on: i. Perspectives on Sustainability'. (5) ii. Global trends of GHG emissions. (5)	10	1	1,2	7.1.1
6.B	Explain in detail the outcomes of the environmental issues addressed by the following international environmental agreements: i. Kyoto protocol 1997. (5) ii. Paris agreement 2016. (5)	10	2	2,3	7.1.1
7	Present your detailed study on any real world issue you think can be dealt with a sustainable solution w.r.t the problem, proposed solution, methodology / results / outcome and a case study, if available	20	3	6	7.1.4

----- The End -----

SARDAR PATEL COLLEGE OF ENGINEERING

22/2/22

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations MAY 2022

(2021-22)

Program: T.Y. Sem.VI and B. TECH. Sem. VIII

Maximum Points: 100

Duration: 03 Hrs.

Course Name: HUMAN RESOURCES DEVELOPMENT AND ORGANIZATIONAL BEHAVIOR (HRDOB)

Semester: VI/VIII (Civil/Mechanical/Electrical)

Notes:

• Attempt **any five** questions.

Course Code: OE-BTC-611/812

- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	CO	BL	PI
	(a)Discuss: importance of effective organization, organization culture and explain how to make staff more effective at workplace.	10	1	1	6.1.1
1	(b)Explain: McGregor's Theory 'X' and Theory 'Y' and assumptions about nature of people. How this will help leaders to develop an organization? Discuss.	10	1	1	6.1.1
	(a)Discuss the Role of HR in an organization development. Also explain challenges of human resource development.	10	2	2	10.2.1
2	(b)How HRD process helps people to acquire competencies in an organization? Explain.	10	2	3	10.2.1
	(a)What is the need for organizational learning? Highlight its importance in organizational development.	10	1	2	12.1.2
3	(b) Explain training and HRD process model and comment on effective training design in HR development process.	10	2	3	11.3.2
	(a)What is employee counselling? Why it is required? State its importance with an example and state its benefits.	10	2	4	12.2.2
4	(b)What is competency mapping? Explain its need in competency identification process.	10	2	4	12.1.1

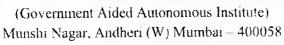
Page 1 of 2

(P.T.O.)

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations MAY 2022


(2021-22)

e	(a)Differentiate between career development and career management. Explain skills required in future career and job retention drivers.	10	2	4	12.1.1
5	(b) What is diversity at workplace? How diversity matters? What kind of role HR can play in the process to manage it?	10	2	4	12.1.1
	(a)Discuss HR ethics and its need at workplace.	10	2	2	8.1.1
6	(b) What do you mean by organizational behavior? State Important characteristics of organizational behavior.	10	2	5	8.2.2
_	(a)Explain major contributing disciplines to the field of organizational behavior.	10	2	4	8.1.1
7	(b)What is a work team? What makes workplace teams effective? Highlight issues of emotions and stress at workplace.	10	2	1	9.1.1

Page 2 of 2

SARDAR PATEL COLLEGE OF ENGINEERING

Re-Examinations JULY 2022 (OE BTC611/812)

(1.4. A. Aug (Uvi) Lun II Duration: 03 Hrs.

Program: T.Y. and B. TECH Course Code: OE BTC611/812 Course Name: HRDOB

Maximum Points: 100 Semester: VI/VIII

Notes:

tes: Hyman Resnue Oundoprocod 2 • Attempt any five questions. Securitation Jehanner, • Attempt any five questions should be grouped together 12/7/22

- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.
 - *****

Q. No	Questions	Point s	со	BL	PI
•	(a) Explain Critical roles and challenges of HRD.	10	1	2	1.3
1	(b) Explain HRD Process Model.	10	1	4	2.1 2
	(a) Discuss Mentoring for employee development.	10	2	2	1.3
2	(b)What is stress management, employee wellness and health promotion? Explain.	10	2	4	2.1
	(a) Discuss the role of HRD in Career Planning, management, and development.	10	2	4	1.3
3	(b) Differentiate between Organizational Learning, and learning organizations.	10	2	5	2.2 3
	(a) How HRD can be used for innovation and talent development and management? Explain.	10	2	2	2.1
4	(b) Discuss ethical attitude, behavior and development into an organization.	10	3	4	2.3
	(a) What is organizational Behavior? Explain.	10	3	2	
5	(b) Discuss Emotions and Moods, Personality and Values in an organization.	10	2	4	3.1
	(a) Explain: Foundations of Group Behavior such as Understanding Team work, Communication, leadership.	10	3	2	2.1
6	(b) What do you mean by Organizational Culture? Explain.	10	3	3	3.4
	(a) Discuss the role of Negotiations in conflict management.	10	3	4	2.3
7	(b) How effective decision-making affects organization development? Explain.	10	3	4	2.3
			Page 1 o	f 2	

BharatiyaVidyaBhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Munbai – 400058

ESE-MAY 2022 T.Y. B.Terry (Civi)

Program: Civil Engineering

Course Code: MC-102

Duration:3 hr.

Course Name: Environmental Studies

Notes:

- 1. Attempt any five out of seven questions
- 2. Illustrate answer with neat sketches wherever required.
- 3. Make suitable assumptions where necessary and state them clearly.

		Tercarry.				
Q.No.	Questions	Points	BL	СО	PO	PI Code
1.	 Explain the Air & Water pollution with following points, 1. Definition 2. Pollutants 3. Sources 4. Effect on environment 5. Control measures 	20	1	1,2,3	6,7	1.3.1
2	 Explain the concept of ecology with following points, 1. Ecology & ecosystem 2. Biotic & abiotic factors 3. Food chain/food web/ tropic level 4. Energy pyramids 5. Lie-bigs law of the minimum & productivity 	20	2	1,2	6,7	1.3.1
3	 Explain hydrological & carbon cycle with diagram. Explain aquatic and terrestrial ecosystem with examples. 	20	2	1,2,3	6,7	1.3.1/ 2.1.3
4	 Explain water treatment plant & sewage treatment plant with following points, 1. Function 2. Treatment units – operation and processes 3. Treatment flow sheet 	20	2	1,2	6,7	1.3.1
5	 Explain Noise & Soil Pollution with following points, 1. Definition 2. Causes or sources 3. Effect on environment 4. Control measures 	20	2	1,2,3	6,7	1.3.1/ 2.1.3
6	Write a short note on:1. Sustainable development2. Solid waste Management	20	2	1,2	6,7	1.3.1/ 2.1.3
7	Write a short note on: 1. Radiation Pollution 2. EPA,1986	20	2	1,2,3	6,7	1.3.1/ 2.1.3

Maximum Points: 100 Semester: VI

Seri

BharatiyaVidyaBhavan's
SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

14/7/22

1-4. J. Full (Civil) Lem II Re-Exam-July 2022

Program: Civil Engineering

Course Code: MC-102

Duration:3 hr. Maximum Points: 100 Semester: VI

Course Name: Environmental Studies

Notes:

- 1. Attempt any five out of seven questions
- 2. Illustrate answer with neat sketches wherever required.
- 3. Make suitable assumptions where necessary and state them clearly.

Q.No.	Questions	Points	BL	со	РО	PI Code
1.	 Explain the Air & Water pollution with following points, 1. Definition 2. Pollutants 3. Sources 4. Effect on environment 5. Control measures 	20	1	1,2,3	6,7	1.3.1
2	 Explain the concept of ecology & Loss of Bio-Diversity Convention on climate change 	20	2	1,2	6,7	1.3.1
3	 Explain Nitrogen & Sulphur cycle with diagram. Explain EPA,1986. 	20	2	1,2,3	6,7	1.3.1/ 2.1.3
4	 What do you mean by GRIHA? Explain the function of GRIHA & its rating system. Bio-Diversity act 	20	2	1,2	6,7	1.3.1
5	 Explain Noise & Thermal Pollution with following points, 1. Definition 2. Causes or sources 3. Effect on environment 4. Control measures 	20	2	1,2,3	6,7	1.3.1/ 2.1.3
6	Write a short note on:1. Sustainable development2. Global Warming.	20	2	1,2	6.7	1.3.1/ 2.1.3
7	Write a short note on: 1. Radiation Pollution 2. Ozone Depletion	20	2	1,2.3	6,7	1.3.1/ 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2022

T. M. B. Tul (civ) 1) Lem VI

Program: B.Tech. in Civil Engineering Course Code: PE-BTC621 Course Name: Analysis of Indeterminate Structures Duration: 3 Hours Maximum Points: 100 Semester: VI

- 1. Attempt any FIVE questions out of SEVEN questions.
- 2. Answers to all sub questions should be grouped together.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	CO	BL	PI
Q1(a)	Find the reaction at A in the frame shown in figure using flexibility method.	08	1	3,4	1.3.1 2.1.3
	$ \begin{array}{c} 20 \text{ kN/m} \\ A \underbrace{4} \underbrace{4} \underbrace{4} \underbrace{4} \underbrace{4} \underbrace{4} \underbrace{4} \underbrace{4}$				
Q1(b)	Find the force in the redundant member AC of the truss loaded as shown in figure below by flexibility (compatibility) method. (Take force in member AC as the redundant force.) Assume AE to be same for all the members.	12	1	3,4	1.3.1 2.1.2 2.1.3
	$30 \text{ kN} \qquad 70 \text{ kN}$ $B \qquad C \qquad 10 \text{ kN}$ $3m \qquad A \qquad 4m \qquad D \qquad 4m \qquad E$				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2022

Q2(a)	Analyse the continuous beam shown in figure using three moment theorem and find the support moments at B and C.	12	1	4	1.3.1 2.1.2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Q2(b)	A two hinged parabolic arch of span 20 m and rise 4 m carries a concentrated load of 40 kN at a distance of 5 m from the left support. Determine the horizontal thrust in the arch. The moment of inertia (MI) of the section of the arch varies as $I = I_0$ sec Θ , where $I_0 = MI$ of the section at the crown.	08	1	3,4	1.1.1 1.3.1 2.4.1
Q3(a)	Find the reaction at A in the frame shown in figure using the theorem of least work.	10	1	3,4	1.3.1 2.1.3
	B 4 m 4 m A A				
	Define flexibility coefficient fij and state the important properties	05	1	3,4	1.3.1
Q3(b)	of the flexibility matrix				2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations: May 2022

Q4(a)	Find the unknown displacements in the frame shown in the figure below by slope deflection method.	10	2	3,4	1.3.1
	$40kN$ $B \downarrow C$ $20 kN/m$ $3 m$				
Q4(b)	Calculate the stiffness coefficients for the frame shown in figure w.r. to the coordinates indicated in the figure.	10	2	3,4	1.3.1 2.1.2 2.1.3
	$1 \frac{B}{2I} \frac{2}{3m} \frac{3}{I} C$ $2I \qquad 2I \qquad 5m$				
	A D D				
Q5	Analyse the the rigid jointed frame loaded as shown in the figure below by moment distribution method.	20	2	3,4	1.3.1 2.1.2
	$\begin{array}{c} 30 \text{ kN/m} \\ \text{B} & \text{C} \\ 4m & 2I \\ \text{I} & \text{I} \\ \text{I} & \text{2m} \\ \text{D} \end{array}$				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: May 2022

Using stiffness method, find the unknown displacements in the rigid jointed frame loaded as shown in the figure below.	14	2	3,4	1.3.1 2.1.2 2.1.3
$B \xrightarrow{20 \text{ kN/m}} C \xrightarrow{60 \text{kN}} E$ $B \xrightarrow{5m, 3I} 2m 2I 2m$ $I \qquad I 3m$ $A \xrightarrow{D}$				
What are the conditions to be satisfied while analyzing a structure using (i) Elastic analysis (ii) Plastic analysis 	06	1,2,3	3,4	1.3.1 2.1.2
Find the shape factor for the unsymmetrical I section with the following data. Top flange - width = 300 mm, thickness = 30 mm Bottom flange - width = 200 mm, thickness = 20 mm Depth of web = 250 mm, thickness of web = 25 mm.	10	3	3,4	1.3.1 2.1.2
A continuous beam is subjected to working loads as shown in figure below. If $M_P = 75$ kN-m, calculate the (true) load factor for the beam. $\frac{60 \text{ kN}}{20 \text{ kN/m}} = \frac{50 \text{ kN}}{3 \text{ m}} = \frac{50 \text{ kN}}{3 \text{ m}}$	10	3	3,4	1.3.1 2.1.2
	rigid jointed frame loaded as shown in the figure below. 60kN B 20 kN/m B 5m, 3I I I A M C 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2l 2m 2m 2m 2m 2m 2m 2m 2m 2m 2m	rigid jointed frame loaded as shown in the figure below. 60kN 60kN 60kN 8 5m, 31 1 3m 4 1 1 3m 2m 2m 2m 2m 2m 2m 2m 2m 2m 2	rigid jointed frame loaded as shown in the figure below. 60kN 60kN B 20 kN/m B 5m, 3I I I I B Sm, 3I I I I I I I I I I I I I I	rigid jointed frame loaded as shown in the figure below. 60kN B 20 kN/m B 20 kN/m C 20 kN/m C 2m 2m 2m 2m 2m 2m 2m 2m 2m 2m

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations: July 2022 sem U Y. S. Tera (UNVI)

Program: B.Tech. in Civil Engineering Course Code: PE-BTC621 Course Name: Analysis of Indeterminate Structures

Duration: 3 Hours Maximum Points: 100 Semester: VI

1517/22.

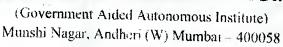
- 1. Attempt any FIVE questions out of SEVEN questions.
- 2. Answers to all sub questions should be grouped together.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	со	BL	PI
Q1(a)	Find the reactions at A in the frame shown in figure using flexibility method.	10	1	3,4	1.3.1
	30 kN/m $3 m$ A				
Q1(b)	Find the force in the redundant member AC of the truss loaded as shown in figure below by flexibility (compatibility) method. (Take force in member AC as the redundant force.) Assume AE to be same for all the members.	10	1	3,4	1.3.1 2.1.2 2.1.3
	$15 \text{ kN} \qquad 20 \text{ kN}$ $B \qquad \qquad$				

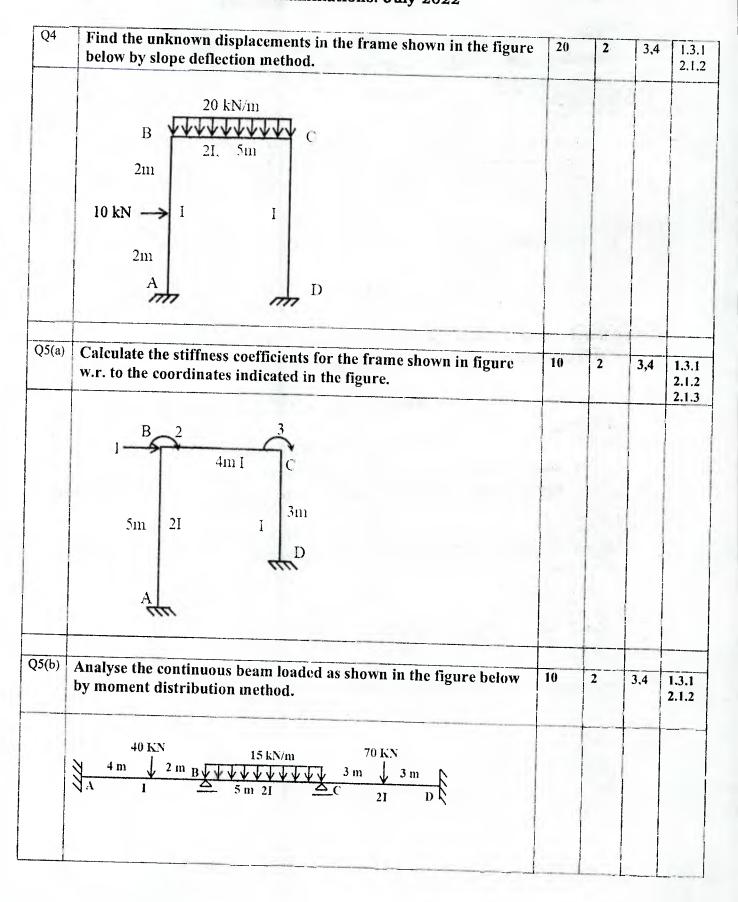
Bharatiya Yuga Bhawan

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

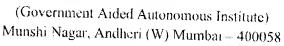

Re-Examinations: July 2022

Q2(a)	Analyse the continuous beam shown in figure using three moment theorem and find the support moments at A and B.	12	1	4	1.3.1
	$A \xrightarrow{25 \text{ kN/m}} 50 \text{ kN}$ $A \psi \psi$				
Q2(b)	A two hinged parabolic arch of span 30 m and rise 5 m carries a concentrated load of 70 kN at a distance of 10 m from the right support. Determine the horizontal thrust in the arch. The moment of inertia (MI) of the section of the arch varies as $I = I_0$ seco, where $I_0 = MI$ of the section at the crown.		1	3,4	1.1. 1.3. 2.4.
Q3(a)	Find the reaction at D in the frame shown in figure using the theorem of least work.	10	1	3,4	1.3.1 2.1.3
	B 3 m 3 m C 3 m 3 m				
93(b)] 	Define stiffness coefficient k _{ij} and state the important properties of the stiffness matrix.	05	2	3,4	1.3.1 2.1.3
93(c) <u>s</u>	State if the following method is a force method or displacement(i)Moment distribution method(ii)Stiffness method(iii)Method of least work(iv)Flexibility method(v)Slope deflection method	05	1, 2	1,2	1.3.1



Chatter of Barry 21 s

SARDAR PATEL COLLEGE OF ENGINEERING



SARDAR PATEL COLLEGE OF ENGINEERING

Re-Examinations: July 2022

Q6(a)	Using stiffness method, find the unknown displacements and member end moments in the rigid jointed frame loaded as shown in the figure below.	14	2	3,4	1.3.1 2.1.2 2.1.3
	$A \int 4m \qquad 4m \qquad 2m \qquad B \qquad 3m \qquad 3m \qquad C$ $2I \qquad 1.5 \qquad I \qquad \Delta$				
	I 3m				
Q6(b)	What are the advantages of plastic analysis over elastic analysis? Also mention the limitations of plastic analysis.	06	1,2,3	3,4	1.3.1 2.1.2
Q7(a)	Find the shape factor for the unsymmetrical I section with the following data. Top flange - width = 250 mm, thickness = 30 mm Bottom flange - width = 400 mm, thickness = 40 mm Depth of web = 300 mm, thickness of web = 30 mm.	10	3	3,4	1.3.1 2.1.2
Q7(b)	A continuous beam is subjected to working loads as shown in figure below. If $M_P = 100$ kN-m, calculate the (true) load factor for the beam.	10	3	3,4	1.3.1 2.1.2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester May 2022 Examinations

2715/2

Program: B. Tech. Civil Engineering

Course Code: PE-BTC612

Course Name: GIS Science & Applications

Notes:

- es: Geographic Informations Schuster, M 1. There are TOTAL SEVEN MAIN questions, each of 20 points. A Deputication S
- 2. QUESTION 1 and 5 is COMPULSORY. Data is given in the folder 'PE_BTC622 End Sem May 22' on the desktop. Save all the outputs in the 'Output' folder.

Zip the Output folder and upload it on the classroom PE-BTC622 End Sem May 22.

- 3. From the remaining Five Questions Solve ANY THREE.
- 4. Assume suitable data, wherever necessary and State it clearly.
- 5. Write answer to each question on a new page.
- 6. Answers to be accompanied with appropriate sketches/facts & figures/table or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions	Points	со	BL	PI
1.					
	1. Define: (2 marks each)	······································	++		
	i. Web GIS				
	ii. Geo Spatial Analysis				
	iii. Data Structures				
	iv. Cartography				
	v. Map projections				
	2. Differentiate between: (2 marks each)	20	1,2,3,4	1,2	5.1.1
	i. Horizontal and Vertical datum.				
	ii. Internet and Web GIS.				
	iii. Spatial and non-spatial data sets				
	iv. Spatial and non-spatial data sources				
	v. Relational database and Network database				
_		·····	++		<u> </u>
2.A	Explain with appropriate examples how Geographic Information		++		+
2.A	system (GIS) is different than any other information system.	5	1,2	1,2	5.1.2
	Explain the elements of basic map design.(3)	· _ · · · · · · · · · · · · · · · · · ·			+
1.0	Differentiate between qualitative and quantitative maps. (3)				
2.B	State the characteristics and advantages of Web GIS. (6)	15	3,4	3,4	5.1.3
	Give various applications of WebGIS. (3)				
			+		
	Explain with a neat sketch the working of a remote sensing (RS)				
	system and its applications. (5)	10			i i
3.A	Explain how the information extracted from a RS can be a data		3,4	3,4	5.1.2
	source for spatial analysis in GIS with an appropriate example. (5)				
4 D	Differentiate between raster and vector data structure. (6)				
3.B	For a raster model, state the rules needed to assign value to a cell. (4)	10			5.1.2

Duration: 3hrs.

Maximum Points: 100

Semester: VI

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester May 2022 Examinations

4.A	photogrammetry. (Explain with a ne	at sketch how the location global positioning system	n of any spatial feature (GPS). (5)	is	10	3,4	4	5.1.3
4.B	Describe the 'Oua	d tree' representation of a ats available for raster data	raster data structure.(6))	10	3	1,2	5.1.3
5.A	Data 5A folder co QGIS and answer 1. The sha reference 2. The attril 3. The sma 4. The geoi	nsists of "Hawaii Countie the following questions: (pefile is projected on	es" vector data. Open it write on the answershe Coordin consists of	ate	5	5	5,6	5.1.4
<u></u>	Data 5B folder co The ground contr are marked in red GCP are as given	nsists of an image "Mysor ol points (GCP) to be ge and numbered from 1 to	e_city". oreferenced on the image	age the				
	GCP	76.648849050	12.267386148					
		76.633172162	12.265418473				0	
	2	76.644052212	12.287837785					
	3	76.622385724	12.290051312					
	4	76.616882196	12.302348407				1	
	6	76.627669375	12.316490605					
		76.660330959	12.307149110					
5.B	8	76.692116262	12.305623314		5	5	5,6	5.1.4
	9	76.674680285	12.323340105					
	10	76.694648762	12.332985015					
		76.652195657	12.329953224					
	11	76.666959208	12.347802326					
	13	76.630331570	12.345493168					
	14	76.618523934	12.336633462					
	15	76.611912984	12.328705243				1	
	coordinates (de georeferenced i	ne given image in QGIS efault transformation pa mage (take Screenshot ") in the Output folder.	and save it in pain	the at as				
5.C	Data 5C folder	consists of 'contour' la QGIS and do the followin assify the contours - Grad	g:	1 the	5	5	5,6	5.1

Page 2 of 3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester May 2022 Examinations

5.D	 iii. Label the contours - single label - elevation Save / Export the image (with all the above changes) as "contour modified" to the Output folder. Data folder 5C consists of tacheometric survey data in excel sheet. Convert the data in '.csv' format and prepare a shapefile from the csv data in QGIS. Save the shapefile in the Output folder as "tacheo points". 	5	5	5,6	5.1.4
6.A	State and explain the distortions that occur in the map projections. (4) differentiate between cylindrical and conical projections. (6)	10	2,3	3,4	5.1.2
6.B	Explain with an appropriate example, the arc, node and polygon topology for representing vector data.	10	2,3	3,4	
7.A	Write a note on i. Topographical maps of India. (5) ii. Earth Ellipsoids. (5)	10	3	1,2	5.1.2
7.B	Explain the term 'Topology building'.(2) Explain with proper example any two of the following topology building: (8) 1. Connectivity 2. Contiguity 3. Containment	10	3	1,2	5.1.2

----- The End -----

Page 3 of 3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester July 2022 Re-Examination T.Y. A. Tech (Civil) Lem VI

Program: B. Tech. Civil Engineering

Course Code: PE-BTC622

Course Name: GIS Science & Applications

Duration: 3hrs.

Maximum Points: 100 Semester: VI

Geographic information 1577/22

Notes:

- 1. There are TOTAL SEVEN MAIN questions, each of 20 points
- **QUESTION 1 and 5 is COMPULSORY.** 2. Data is given in the folder 'PE BTC622 End Sem May 22' on the desktop. Save all the outputs in the 'Output' folder. Zip the Output folder and upload it on the classroom PE-BTC622 End Sem May 22.
- 3. From the remaining Five Questions Solve ANY THREE.
- 4. Assume suitable data, wherever necessary and State it clearly.
- 5. Write answer to each question on a new page.
- 6. Answers to be accompanied with appropriate sketches/facts figures/table & or chart/graph/diagram/flowchart wherever necessary or required.

Q.No.	Questions	Points	СО	BL	PI
1.					
	1. Define: (2 marks each)				
	i. GIS				
	ii. Remote sensing system				
	iii. Global positioning system				
	iv. Spatial analysis				
	v. Cartography	20	1,2,3,4	1,2	5.1.1
	2. Differentiate between: (2 marks each)			,	
	i. Raster & Vector Model				
	ii. CAD & GIS				
	iii. Spectral and Spatial resolution				
	iv. Network and relational database structure				
	State the advantages of GIS (3).				
2.A	Explain the trend of GIS market (2).	5	1,2	1,2	5.1.2
2.B	Explain the importance of geographic projections in any GIS (4). State and explain different types of projections available in a GIS (6). Explain how maps are the base for any spatial work in a GIS (2). Explain the difference between analog and digital maps (3).	15	3,4	3,4	5.1.3
	Explain different types of remote sensing systems (2). Distinguish them				
	(3).				
3.A	Explain how GPS data can be used for spatial analysis, with a proper example (7).	10	3,4	3,4	5.1.2
3.B	Give different file formats of raster data structure (4).	10			5.1.2
	Explain run length encoding compression technique (6).	10			5.1.2

Page 1 of 2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester July 2022 Re-Examination

4. A	Give different file formats for vector data structure (4). Explain with an example how a vector data is stored (6).	10	3,4	4	5.1.3
4.B	State various spatial analysis operations (4). Explain any two spatial operations with a proper example (6).	10	3	1,2	5.1.3
5.A	Data 5A folder consists of "PubSchools" vector data. Open it in QGIS and answer the following questions: (write on the answersheet) 1. The shapefile is projected on Coordinate reference system. (2) 2. The attribute data for the shapefile consists of filed 'District'. Name 2 to 3 Districts. (2) 3. Which tool did you use to get the above information. (1)	5	5	5,6	5.1.4
5.B	For the toposheet given in 5B folder, georeference the four corners of the toposheet . The coordinates are given in the toposheet itself. Take the screen shot (press PrtSc on the keyboard and paste it in paint) of the geo referenced image (complete QGIS screen), save it as 'reg no Q.5B' and upload on the classroom.	5	5	5,6	5.1.4
5.C	Data 5C folder consists of Vector layers. Open all the layers in QGIS and prepare a map layout showing north arrow, scale and coordinate frame. Save the Map layout as pdf 'reg no_Q.5C' and upload on the classroom.	10	5	5,6	5.1.4
6	State the three types of topology building for vector data structure in GIS with proper example (10). Represent the given vector data structure in (10): i) Left-right topology ii) Polygon are topology A Polygon 1 Arc 0 Node Direction of Arc	20	2,3	3,4	5.1.2
7	Write a note on: (4 points each)i.Geodetic datumii.Advantages of WebGISiii.World Geodetic System 1984iv.Components of a GIS systemv.GIS as a decision supporting system	20	3	1,2	5.1.2

----- The End -----

Page 2 of 2

1	1			·	
RDAR	PATEL	COLL	EGE OF	ENGINE	ERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAM -2022

Program: Civil Engineering T.Y. B. Tem(Civ.)

Course Code: PE-BTC 651

Duration:3 hr.

Maximum Points: 100

Course Name: SOLID & HAZARDOUS WASTE MANAGEMENT

Semester: VI

Notes:

- 1. Q.1 is compulsory & attempt any four from remaining six
- 2. Illustrate answer with neat sketches wherever required.
- 3. Make suitable assumptions where necessary and state them clearly.

Q.No.	Questions	Points	BL	со	РО	PI Code
1	 Attempt any four: Bio-medical waste Identification of Hazardous waste Stationary Container Systems (SCS) Types of Land fill method Transportation of solid waste Sample label of containers on hazardous waste 	20	1	2,3	1,6,7	1.3.1
1.	 Define: Solid waste & Solid waste management. Explain the various sources & types of solid wastes. Explain the solid waste characteristics. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
2	 Explain collection services for solid waste in a city with their diagrams, suitability, advantages & disadvantages. Design a solid waste collection system to service area having 1000 dwellings. Assume that 2 Person collector crew will be used, Avg. no. of residents per service=3.5 SW generation per capita= 2.0lb/capita/day Density of solid wastes at containers= 200lb/yd3 Containers per service= two 32 gal containers Types of service = 50% rear of house, 50% alley system Collection frequency = 1/week Collection vehicle= rear loaded compactor Compaction ratio= 2 &Round trip haul distance =15mi Length of workday= 8h & Trips per day= 2 Off route factor = 0.15 Constants for estimating haul time=a =0.016h/trip, b = 0.018mi/h & At site time /trip= 0.10h/trip 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
3	 What are the objectives of processing techniques? Explain the various types of volume reduction for solid waste at processing stations in solid waste management. Explain briefly functional elements of solid waste management system. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

	Munshi Nagar, Andheri (W) Mumb	ai – 400058
ote on:		
	· · · · · · · · · · · · · · · · · · ·	

	Write a short note on:		1	[
4	 Costs in solid waste collection system Transfer station Onsite handling & Onsite storage for solid waste Public health effects in municipal solid waste management. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
5	 Explain the following methods of treatment & disposal of solid waste in detail, 1. Sanitary Landfill 2. Incineration 3. Open dumping 4. Composting 5. Pyrolysis 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
6	 Explain treatment options available for hazardous waste in India. Explain the following operators requirement while handling hazardous waste Storage area Container Management Hazardous waste accumulation 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
7	 Explain the responsibilities of occupier as per hazardous waste management rules, 2016. Explain any four characteristics of hazardous waste as per hazardous waste management rules, 2016. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

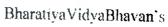
TY. J. Tech (WII) Lon Re-Exam July -2022

Program: Civil Engineering

Course Code: PE-BTC 651

Duration:3 hr. Maximum Points: 100

Course Name: SOLID & HAZARDOUS WASTE MANAGEMENT


Notes:

1577122

Semester: VI

- 1. Q.1 is compulsory & attempt any four from remaining six
- Illustrate answer with neat sketches wherever required.
 Make suitable assumptions where required.
- B. Make suitable assumptions where necessary and state them clearly.

Q.No	Questions	Points	BL	co	PO	PI Cod
1	 Define solid waste and solid waste management. List the equipment's used in collection of solid waste. Transfer Station. List the factors affecting composting process of solid waste List the sources of generation of hazardous waste. Explain the main main in the main main in the main main in the main main in the main main main in the main main main main main main main main	20	1	2,3	1,6,7	
2	 Explain the major provisions in Municipal Solid Waste Management Rules 2016. Design a solid waste collection system to service area having 1000 dwellings. Assume that 2 Person collector crew will be used, -Avg. no. of residents per service=3.5 -SW generation per capita= 2.0lb/capita/day -Density of solid wastes at containers= 200lb/yd3 -Containers per service= two 32 gal containers -Types of service = 50% rear of house, 50% alley system -Collection frequency = 1/week -Collection vehicle= rear loaded compactor -Compaction ratio= 2 &Round trip haul distance =15mi -Length of workday= 8h & Trips per day= 2 -Off route factor = 0.15 -Constants for estimating haul time=a =0.016h/trip, b = 0.018mi/h & At site time /trip= 0.10h/trip 	20	2	1,2,3	1,6,7	1.3.1/2.1.3
3	 Explain the health safety measures to be adopted during handling and processing Solid Waste Explain briefly functional elements of solid waste management system. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
4	 Write a short note on: 1. Types of wastes 2. Types of collection services 3. Public health effects in municipal solid waste management. 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058

	4. Chemical characteristics of solid wastes					
5	 Explain the methods of treatment & disposal of solid waste in detail. Enlist Various Methods of land filling and explain any one of them. Give the advantages and disadvantages of land filling. 	y 20 of	2	1,2,3	1,6,7	1.3.1/ 2.1.3
6	 Explain importance of solid waste management in making any city as smart city. Explain the Handlers/operators requirement while handling hazardous waste 	20	2	1,2,3	1,6,7	1.3.1/ 2.1.3
7	 State the status of recycling of solid waste in India Explain any four characteristics of hazardous waste as per hazardous waste management rules, 2016. 	20	2	1,2,3	1,6,7	1.3.1/

(Government Aided Autonomous Institute)
 Munshi Nagar, Andheri (W) Mumbai – 400058

20/5/22

End Semester Examination - May 2022 T. M. B. Tech (GUP) Lenn JL

Program: B. Tech. Civil

Maxin

Course Name: Traffic Engineering and Control

Course Code: PEC-BTC726 (Elective)

Duration: 3 Hour Maximum Points: 100 Semester: VI

Notes:

- (i) Question 1 is compulsory
- (ii) Solve any four out of remaining six questions
- (iii) Assume suitable data if required

Q.No.	Questions	Points	со	BL	PI
Q.1.					
(a)	Define spot speed study. Discuss different methods available for conducting spot speed study.	10	1	2	1.2.1
	Spot speed study were carried out at a stretch of highway. The consolidated data is given bellow in Table 1. Determine graphically	1-		-	
(b)	 the following; (i) What will be 98th percentile speed, 85th percentile speed and 15th percentile speed? 	10	2	3	2.2.3
	(ii) Mean mode median variance and standard deviation.			1	1
Q.2.					
(a)	Enlist the different methods available for conducting traffic survey for estimation of Running speed and journey speed. Discuss field procedure for conducting traffic survey by moving observer method. How will you record the data collected.	08	1	3	4.1.
(b)	ABCD is a street running North to South consist of three adjacent section. The length of each section shown in the table 2. below; The details of observation of moving observer team is shown in the Table 3 below. Calculate the flow and running speed in each section in both direction and overall journey speed in each direction.	12	1	5	2.2.
Q.3.			1		
(a)	 the spot speed study at particular location are normally distributed with mean of 51.7 km/hr and standard deviation 8.3 km/hr. what is the probability that; (i) Speed exceed 65 km/hr. (ii) Speed lie between 45 km/hr and 65 km/hr. 	10	2	5	2.2.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2022

				T	
	(iii) What will be 98 th percentile speed, 85 th percentile speed and 15 th				
i	Shaam 1			+	
	The 30 minute traffic count on cross road 1 and 2 during peak hour are observed as 280 vehicles per lane and 250 vehicles per lane respectively approaching the intersection. In the direction of heavy traffic flow, if the Amber time required is 3 second and 2 second for two roads based on approach speed. Design a signals by trial circle method. Also, draw a Phase diagram and tabulate the results. (Assume headway of 3 second during green phase)	10	2	5	2.2.4
	write short notes on				1.01
2.4.	z - Test and Student $-t$ Test	5	2	1	1.2.1
(a)	One Tail and Two Tail Test.	5	2	1	1.2.1
(b) (c)	One fail and Two fail rest. The spot speed of 24 vehicles at particular location of highway is shown in Table 4 below; the population mean spot speed at the location is 45 km/hr. verify the spot speed is higher or lower than population mean speed.	10	2	4	2.2.4
Q.5.			2	2	1.2.1
(a)	What are the different types of traffic signs? Mention at least two traffic signs of each type.	5			1.2.1
(b)	the state of road markings.		-		
(~)	 Explain the different types of road markinger A single lane road of 10 km long is to be converted to concrete road at the cost of 125 lakhs per km including all the improvement. The vehicle operating cost of existing road is 7 Rs.per vehicle per km and vehicle operating cost of proposed concrete road will be 5 Rs. per vehicle per km. the average traffic expected on the road is 3500 vehicle per day for design period of 25 years. The maintenance cost of existing single lane road is 25,000 Rs. per km per annum and maintenance cost of proposed concrete road will be 30,000 Rs. per km per km per annum. If the rate of interest is 12 percent. Determine the project is worth or not. 	10			
Q.6.		05	2	4	2.1
(a)	Discuss average Growth factor method for trip distribution.	05			
(b)	Discuss average of D based and non Home Based trip Discuss Home based and non Home Based trip	1		1	
(b)	Discuss Home based and non frome based any The traffic pattern in three zones during $O - D$ study is shown in $O - D$ matrix (Table 6). Determine the future trip generated based on present data by average growth factor method.	10	2	5	2.2
Q.7.					
(a)	Derive the fundamental equation of traffic flow (frame volume).	1 08	1		2 1.3

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - May 2022

(b)	Discuss Space mean speed and time mean speed	06	1	2	1.2.1
(c)	Define the term (i) Precision and (ii) Confidence level with example	06	1	2	1.2.1

Table 1. Q. 1. (b)

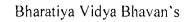

Speed range	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	12	18	68	90	203	255	120	42	30	10

Table 2. Q.2. (b)

Section	Length (m)
AB	500 m
В	Intersection
BC	600 m
С	Intersection
CD	450

Table 3. Q.2.(b)

	So	uth Bound Tra	ffic	
Section	Time	l l	ed	
	(second)	Opposite direction	Vehicles Overtaking test car	Vehicles Overtaken by test car
AB	152	25	4	3
В	15			
BC	172	31	2	2
С	10			
CD	138	28	3	4
	No	rth Bound Tra	ffic	
DC	132	50	2	1
C -	12			
СВ	160	55	3	4
В	18			
BA	145	45	1	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai ~ 400058

End Semester Examination - May 2022

Table 4. Q.4.(c)

24	27	39	31	55	27	36	24
41	45	49	43	43	45	46	45
31	38	38	42	39	48	55	54

Table 5 (Q. 6)

Origin/distination	1	2	3
1	60	100	200
2	100	20	300
3	200	300	20

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058 TY, A, Feuch (Civi)

RE- EXAMINATION JULY 2022

Program: T. Y. B. Tech. Civil

Course Code: PE - BTC - 663

Duration: 3 hours Maximum Points: 100 Semester: VI

ion VI

Course Name: Traffic Engineering & Control (Elective)

19/7/22

- (i) Question 1 is compulsory
- (ii) Solve any four out of remaining six questions
- (iii) Assume suitable data if required

Q.No.	Questions	Points	со	Module NO.
Q.1.				
(a)	Discuss normal density function and standard normal density function of normal probability distribution curve.	06	2	1
(b)	Discuss Importance of statistics in traffic planning	06	2	1
(c)	At uncontrolled T Junction past experience indicates that probability of vehicles arrive on side of road during 15 second interval and turning right in main road is 1/4. Find the probability that in a period of 1 minute there will be 0, 1, 2, 3 and 4 vehicles arriving and turning right.	08	2	1
Q.2.				1
(a)	Origin – Destination Study	05	1	1
(b)	Least Square Method for Regression analysis	05	2	2
(c)	The speed and concentration of vehicle in a traffic stream were observed' the data were recorded and shown in Table 1. Find the regression equation using least cost method for (i) Determining speed from concentration (ii) Determining concentration from speed.	10	2	2
Q.3.	(II) Determining concentration from speed.			
(a)	Discuss PCU. Also, tabulate PCU of different vehicles on Rural Roads (use IRC guideline).	06	1	2
(b)	Discuss the term Vehicle Occupancy Survey	06	1	2
(c)	Discuss Rotary Intersection. Also state its advantages and disadvantages	08	1	4
Q.4.	1			
(a)	Discuss At Grade Intersection and Grade separate intersection	05	1	5
(b)	Discuss the advantage and disadvantage of Traffic signals.	05	1	4

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE- EXAMINATION JULY 2022

(c)	The Trip pattern in four zones during O –D study is shown in O-	10	1	1
	D matrix, Table 2. Determine future trip generated by (i)			
	Uniform Growth Factor Method and (ii) Average Factor Method		1	
Q.5.				,
(a)	Discuss Guideline for Signal Installation	05	1	4
(b)	Explain the different types of road markings.	07	1	6
(c)	The 30 minute traffic count on cross road 1 and 2 during peak	08	1	6
	hour are observed as 280 vehicles per lane and 250 vehicles per			
	lane respectively approaching the intersection. In the direction of			
	heavy traffic flow, if the Amber time required is 3 second and 2			
	second for two roads based on approach speed. Design a signals			
	by trial circle method. Also, draw a Phase diagram and tabulate			
	the results. (Assume headway of 3 second during green phase).			
Q.6.				
(a)	Explain the balanced and unbalanced transportation problem	06	1	3
	with an example		. 1	
(b)	Discuss Home Interview Method Method for O-D study.	06	1	1
(c)	Enlist the different methods available for conducting traffic	08	2	1
	survey for estimation of Running speed and journey speed.			
	Discuss field procedure for conducting traffic survey by moving			
	observer method. How will you record the data collected.	- e-		
Q.7.				
(a)	Write short notes on	08	1	3
	(i) North west corner method, (ii) Least cost method			
(b)	A company has three plants A, B and C which supply two	12	1	3
	warehouses D, E, F and G. monthly plan capacity are 1500, 2500,			
	500 units respectively. Monthly warehouse requirements are			
	500, 1500, 1500, 1000 units respectively. Unit transportation			
	costs are given in table 3. Obtain initial feasible solution by (i)			
	N- W Corner Method. (ii) Least Cost Method			

Concentration Vech/km	5	10	15	20	25	30	35	40	45	50
Speed	72	68	61	52	47	39	32	27	20	13
Km/hr.										

Table 1.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE- EXAMINATION JULY 2022

Table 2.

O/D	l	2	3	4
1	75	160	225	300
2	200	125	300	175
3	170	260	75	200
4	110	300	120	140

Q.7. Table 3

	D	E	F	G	Supply
A	5	8	6	6	1500
B	4	7	7	6	2500
С	8	4	6	6	500
Demand	500	1500	1500	1000	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END Sem Exam -June 2022

Try. B. Ferry (402) Lens VI

Program: Civil Engineering

Course Code: PC-BTC604

Maximum Points: 100

Duration:3 hrs

Course Name: Design of RCC Elements

Semester: VI

Notes:

- 1) Attempt any five questions.
- 2) Draw reinforcement details wherever necessary.
- 3) Use of IS 456:2000 is permitted.

Q.N	i o.	Questions	Points	со	BL	PI
	a)	What do you mean by Limit State.State and explain the assumptions made in LIMIT State of collapse(Flexure).	05	1	2	2.3.2
-	b)	Derive design stress block parameters for singly RC sections for LSM of design subjected to flexure.	05	1	1,2	1.2.1, 1.3.1
Q1	c)	When is it required to design a doubly reinforced beam?	05	1	2	1.2.1, 1.3.1
	d)	What are the functions served by longitudinal and transverse reinforcement in case of columns.	05	1	2	1.2.1, 1.3.1
Q2	a)	RC section 250mmx650mm depth overall and reinforced with 4-25mm dia is used as simply supported beam over an effective span of 5m. Determine the maximum udl beam can carry safely.Use M 30 and Fe-415	08	1	3	2.1.3
	b)	Design RC beam of size 300x500 mm and span 5m subjected to service udl of 100kN/m .Use M-35 and Fe 415	12	1,2	6	2.4.1
Q3	a)	An isolated TEE beam section has an effective depth of 750mm ,effective flange width of 1200mm ,rib width of 300mm ,slab depth of 125mm .Design the beam to carry ultimate moment of 750kN-m Use M-30and Fe-415.	10	1	3	2.3.1
	b)	Design one way slab panel of room of RCC residential building having dimensions 2.5mx 6m. Give appropriate checks. Use M30and Fe 415.Draw reinforcement details	10	1,2	6	2.4.1
Q4	a)	Design a RC slab for an interior panel of a balcony of a residential building. The size of panel is 3mx 5m.Assume live load of 3kN/m2.,Draw bottom reinforcement plan and section	20	1,2	6	2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END Sem Exam -June 2022

		along long span. Give appropriate checks. Use M35 and Fe 415				
Q5	a)	What are the functions of distribution steel in one way slab?	05	1	2	1.4.1
QJ	b)	Design short helically reinforced column to resist service load of 1500kN.Use M35 and Fe500.Draw reinforcement details	15	1,2	6	3.1.6
Q6	a)	A column of dimension 500mmx500mm is subjected to axial load of 1600kN.Design isolated footing for column assuming SBC as 225kN/m2.Use M30 and Fe 415.	15	1,2	6	3.1.6
QU	b)	Calculate load carrying capacity of column of size 500mmx600mm comprising of 8-25mm dia. Use M-30 and Fe-500.	05	1	2	1.3.1
	a)	A rectangular beam 300mm x500mm effective depth is reinforced with 6 bars of 20mm dia in tension zone. The beam is subjected to udl of 60kN/m over span of 5m.Design shear reinforcement. Use M30 and Fe415	10	1,2	6	3.1.6
Q7	b)	Determine ultimate load carrying capacity of column (300 x500)mm subjected to uniaxial bending reinforced with 4 bars of 20mm	10	1,2	4	2.4.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re Exam –July 2022

T.Y. S. Tech CUVID Lem

Program: Civil Engineering

Course Code: PC-BTC604

Course Name: Design of RCC Elements

Duration:3 hrs Maximum Points: 100

Semester: VI 2017/22-

Notes:

- 1) Attempt any five questions.
- 2) Draw reinforcement details wherever necessary.
- 3) Use of IS 456:2000 is permitted.

Q.N	ło.	Questions	Points	со	BL	PI
	a)	What do you mean by Limit State.State and explain the assumptions made in LIMIT State of collapse(Flexure).	05	1	2	2.3.2
	b)	Derive design stress block parameters for singly RC sections for LSM of design subjected to flexure.	05	1	1,2	1.2.1 ,1.3. 1
Q1	c)	When is it required to design a doubly reinforced beam?	05	1	2	1.2.1 ,1.3. 1
	d)	How much minimum and maximum reinforcement is provided in RC column section? What is the purpose of column ties?	05	1	2	1.2.1 ,1.3. 1
Q2	a)	RC section 300mmx700mm depth overall and reinforced with 4-20mm dia is used as simply supported beam over an effective span of 4.5m. Determine the maximum udl beam can carry safely.Use M 35and Fe-415	08	1	3	2.1.3
	b)	Design RC beam of size 300x500 mm and span 5m subjected to service udl of 100kN/m .Use M-35 and Fe 415	12	1,2	6	2.4.1
Q3	a)	An isolated TEE beam section has an effective depth of 750mm ,effective flange width of 1000mm ,rib width of 300mm ,slab depth of 115mm .Design the beam to carry ultimate moment of 1500kN-m Use M-30and Fe-415.	12	1	3	2.3.1
	b)	Design one way slab panel of room of RCC residential building having dimensions 2.5mx 6m. Give appropriate checks. Use M30and Fe 415.Draw reinforcement details	08	1,2	6	2.4.1
Q4	a)	Design a RC slab for an interior panel of a room of a residential building. The size of panel is 4mx 5m.Assume live load of 2kN/m2.,Draw bottom reinforcement plan and section along	20	1,2	6	2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re Exam –July 2022

		short span. Give appropriate checks. Use M35 and Fe 415				
Q5	a)	What are the functions of distribution steel in one way slab?	05	1	2	1.4.1
4 2	b)	Design short helically reinforced column to resist service load of 1600kN.Use M35 and Fe500.Draw reinforcement details	15	1,2	6	3.1.6
Q6	a)	A column of dimension 500mmx500mm is subjected to axial load of 1800kN.Design isolated footing for column assuming SBC as 225kN/m2.Use M35 and Fe 415.	15	1,2	6	3.1.6
~	b)	Calculate load carrying capacity of column of size 500mmx600mm comprising of 8-32mm dia. Use M-30 and Fe-500.	05	1	2	1.3.1
	a)	udl of 70kN/m over span of 5m.Design shear reinforcement. Use M30 and Fe415	10	1,2	6	3.1.6
Q7	b)	Determine ultimate load carrying capacity of column (300 x500)mm subjected to uniaxial bending reinforced with 4 bars of 20mm dia(each in one corner).Take xu /D= 1.1 .Assume fsc=0.87fy and fc=0.446fck.Assume C1= 0.385 and C2= 0.443.Use M30 and Fe 415.Also find eccentricity of the load.	10	1,2	4	2.4.1

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Examinations, May 2022 TAIB. FRIG COURD Jun EL

Duration: 3 Hour

Semester: VI

Maximum points: 100

30/5/22

Program: B.Tech. Civil Engineering Course Code : PE-BTC 644 Name of the Course: TQM and MIS in construction

Instructions:

Attempt any five Questions out of seven 1.

Draw neat diagrams/use inbuilt graph paper from answer books 2.

- Answers to all sub questions should be grouped together 3.
- 4. Assume suitable data if necessary and state the clearly. Que Deserint

		ion							Points	со	BL	PI
	b. The fo samples. 95% of th	uss in detail t llowing data Use median he chance of s under contr	refers to and Up/I variation	the wo	orkabili test with	ty test of con Z = 1.96 wh	crete for 2 hich descr	20 ibes	8 12	1 2	2 3	1.3.1 2.3.2
Ql	Sample No	Mean value	Sample No		lean alue	Sample No	Mean value	Sa No	mple	Mean value		
	1	24		6	44	11	19		16	43		
	2	21		7	23	12	43		17	46		
	3	19		8	27	13	37		18	19		
	4	22		9	26	14	32		19	20		
	5	25		10	35	15	28		20	22		
Q2	c) What	are challeng	of inform	nation	for a co	nstruction pr	oject?		6 6	2 1	3 2	2.3.1 1.4.1
	b. Follow flooring the limits for	in detail variables in detail variables wing data sho tiles from ter Range chart eet and state	ws the te different and Me	est resu at manu an cha	ults of w ufacturin rt, const	ng lots. Calcu ruct both the	on proper late the c charts us	ties of ontrol	10 10	12	2 4	1.3.1 2.3.2
Q3	b. Follow flooring the limits for	ving data sho tiles from ter Range chart eet and state	ws the te different and Me whether	est resu at manu an cha	ults of w ufacturin rt, const	ater absorpting lots. Calcurrent content of the con	on proper late the c charts us	ties of ontrol ing 8	9	2		
Q3	b. Follow flooring to limits for graph she Lot No. Sample	ving data sho tiles from ter Range chart eet and state	ws the te different and Me whether 2	est resu at many an cha the pro	ults of w ufacturin rt, const ocess is	ater absorpting lots. Calcurate Calc	on proper ilate the c charts us !? 7	ties of ontrol ing	10	2 10 2.84		
Q3	b. Follow flooring to limits for graph she Lot No. Sample size	ving data sho tiles from ter Range chart eet and state 1	we sthe te different and Me whether 2 5.12 4.69	est result manual the product of the	alts of w ufacturin rt, const ocess is45.144.92	ater absorpting lots. Calcurruct both the under contro	on proper ilate the c charts us ? 7 4.31 4.35	ties of ontrol ing 8 4.84 5.08	10 9 3.69 5.35	2 10 2.84 3.22		
Q3	b. Follow flooring to limits for graph she Lot No. Sample size S-1 S-2 S-3	ving data sho tiles from ter Range chart eet and state	x s the ten different and Me whether 2 5.12 4.69 4.98	est result manu an cha the pro 3 4.31 5.09 4.65	alts of wafacturinrt, constocess is45.144.923.29	ater absorpting lots. Calcurate controlruct both the under control564.625.183.814.682.654.48	on proper ilate the c charts us ? 7 4.31 4.35 4.83	ties of ontrol ing 8 4.84 5.08 4.48	10 9 3.69 5.35 6.95	2 10 2.84 3.22 6.18		
Q3	b. Follow flooring to limits for graph sho Lot No. Sample size S-1 S-2 S-3 S-4	Aring data shot tiles from ter Range chart eet and state	ws the tend different and Me whether 2 5.12 4.69 4.98 5.08	est result manual the product of the	alts of wurder ufacturing rt, const occess is 4 5.14 4.92 3.29 4.13	ater absorpting lots. Calcurate control ruct both the under control 5 6 4.62 5.18 3.81 4.68 2.65 4.48 5.85 4.45	on proper ilate the c charts us ? 7 4.31 4.35 4.83 3.42	ties of ontrol ing 8 4.84 5.08 4.48 4.20	10 9 3.69 5.35 6.95 8.21	2 10 2.84 3.22 6.18 5.31		
Q3	b. Follow flooring to limits for graph she Lot No. Sample size S-1 S-2 S-3	ving data sho tiles from ter Range chart eet and state	ws the tend different and Me whether 2 5.12 4.69 4.98 5.08	est result manu an cha the pro 3 4.31 5.09 4.65	alts of wafacturinrt, constocess is45.144.923.29	ater absorpting lots. Calcurate controlruct both the under control564.625.183.814.682.654.48	on proper ilate the c charts us ?? 7 4.31 4.35 4.83 3.42 4.24	ties of ontrol ing 8 4.84 5.08 4.48	10 9 3.69 5.35 6.95	2 10 2.84 3.22 6.18		

		9 10		0.337	2.970				316 777	
		é		0.373	And We want the				384	
		6		0.483			76	-12.12.1	124	
		5		0.577				1.4.111.	114	
		4		0.729	 International Contract (1988) 10 			and the second s	282	
		3		1.023			-	1971,271,66	574	
		2		1.880	and the second s		the She		268	
	Subg	roup Si	zo	A2	d2	D;		C	4	
	1	Tabu	ier vi	ilues fo	r X-bar an	d range	charte			1
	v) vi)	Good Qua Compone		QC inspecto IS	1		5 5	2	2	1.3. 1.3.
Q7	iv)	Effects of					5	2 2	22	1.3.
07	iii)			leterioration	of a structure		5	2	2	1.3.
	i) ii)	Responsit		ILLIX			5	2 2	22	1.3. 1.3.
	· ·			following (a	iny Four)		E		2	1.2
Q6	b. What curve	do you mea s for the cos	n by opti ts of qua	imal cost of c lity and expl	quality? Draw the ain them in deta	he different	10	2	3	1.3.
					ve observed duri management sys		10	1	2	1.4.
	ISO9001:	2000.					10	1	3	2.3.
			.1		Resource Man		f		*	
	4	8	9 10	10	14	13 12				
	3 4	11 7	8	8	13	9	-			
	2	9	7.	6	12	6				
22	1	12	6	5	11	4				
Q5	Lot No.	No. of defectives	Lot No.	No. of defectives	Lot No.	No. of defectives		-		
		ical control (ate whether the p	process is in			·	
	to def	ective pieces	observe	d during ins	pection. Constru	ct	-			
					for bathroom ar er day. Followir		10	1	3	2.3.2
	<u>No.</u>	of defects	4	3 5	3 6	4	2 3	2	4	
	Wall		W- 1	W-2 W-3			W-7 W-8	a	-9 V	V-10
		ical control (tate whether the	process is in	1			
	of de	fects exists	on a w	all surfaces	project and rec as shown belo	w. Construc	t 10	1	3	2.3.2
Q4	c. A Q.	C. Enginee				1.2.				
	9001: b. What		erstand te	erm product r	realization?		5	2	1	1.3.

• •